Parallelizing garbage collection with I/O to improve flash resource utilization

Cited 26 time in webofscience Cited 22 time in scopus
  • Hit : 175
  • Download : 0
Garbage Collection (GC) has been a critical optimization target for improving the performance of flash-based Solid State Drives (SSDs); the long-lasting GC process occupies the flash resources, thereby blocking normal I/O requests and increasing response times. This is a well-documented problem, and a wide range of prior works successfully hide the negative impact of GC on the I/O response times. In this paper, however, we unveil another serious side-effect of GC, called the plane under-utilization problem. More specifically, while a plane is busy doing GC, the other plane(s) in the same die remain idle, as all the planes in a die share a single command and address path that is dedicated to the GC. We also note that most of the state-of-the-art proposals attacking the GC impact on I/O response times are not able to resolve the plane under-utilization problem, and in turn, miss a great potential to further improve the SSD performance. Thus, we next propose a scheduling technique, I/O-parallelized GC, which leverages the idle planes during GC to serve the blocked I/O requests. As a result, flash resources (planes) can be active during the most of GC time and the blocked I/O requests can get serviced quickly, and in turn, an improved SSD performance can be achieved. Using simulation-based evaluations over a wide variety of workloads, we show that the proposed I/O-parallelized GC scheme can improve the response times of the GC-affected I/O requests by 83% (reads) and 70% (writes), by increasing the average plane utilization from the (two planes-per-die) baseline 50% to 74.4% during GC. The I/O-parallelized GC is orthogonal to prior proposals that hide GC overheads; so, they can be combined for further SSD performance improvement.
Publisher
Association for Computing Machinery, Inc
Issue Date
2018-06-11
Language
English
Citation

27th ACM International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2018, pp.243 - 254

DOI
10.1145/3208040.3208048
URI
http://hdl.handle.net/10203/269577
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 26 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0