Depth completion with deep geometry and context guidance

Cited 28 time in webofscience Cited 21 time in scopus
  • Hit : 189
  • Download : 0
In this paper, we present an end-to-end convolutional neural network (CNN) for depth completion. Our network consists of a geometry network and a context network. The geometry network, a single encoder-decoder network, learns to optimize a multi-task loss to generate an initial propagated depth map and a surface normal. The complementary outputs allow it to correctly propagate initial sparse depth points in slanted surfaces. The context network extracts a local and a global feature of an image to compute a bilateral weight, which enables it to preserve edges and fine details in the depth maps. At the end, a final output is produced by multiplying the initially propagated depth map with the bilateral weight. In order to validate the effectiveness and the robustness of our network, we performed extensive ablation studies and compared the results against state-of-the-art CNN-based depth completions, where we showed promising results on various scenes.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2019-05-20
Language
English
Citation

2019 International Conference on Robotics and Automation, ICRA 2019, pp.3281 - 3287

DOI
10.1109/ICRA.2019.8794161
URI
http://hdl.handle.net/10203/269424
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0