7.7 LNPU: A 25.3TFLOPS/W Sparse Deep-Neural-Network Learning Processor with Fine-Grained Mixed Precision of FP8-FP16

Cited 77 time in webofscience Cited 88 time in scopus
  • Hit : 369
  • Download : 0
Recently, deep neural network (DNN) hardware accelerators have been reported for energy-efficient deep learning (DL) acceleration [1-6]. Most prior DNN inference accelerators are trained in the cloud using public datasets; parameters are then downloaded to implement AI [1-5]. However, local DNN learning with domain-specific and private data is required meet various user preferences on edge or mobile devices. Since edge and mobile devices contain only limited computation capability with battery power, an energy-efficient DNN learning processor is necessary. Only [6] supported on-chip DNN learning, but it was not energy-efficient, as it did not utilize sparsity which represents 37%-61% of the inputs for various CNNs, such as VGG16, AlexNet and ResNet-18, as shown in Fig. 7.7.1. Although [3-5] utilized the sparsity, they only considered the inference phase with inter-channel accumulation in Fig. 7.7.1, and did not support intra-channel accumulation for the weight-gradient generation (WG) step of the learning phase. Also, [6] adopted FP16, but it was not energy optimal because FP8 is enough for many input operands with 4× less energy than FP16.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2019-02
Language
English
Citation

2019 IEEE International Solid-State Circuits Conference, ISSCC 2019, pp.142 - 144

DOI
10.1109/ISSCC.2019.8662302
URI
http://hdl.handle.net/10203/268663
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 77 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0