RNN을 이용한 동작기록 마이닝 기반의 추천 방법 A Code Recommendation Method Using RNN Based on Interaction History

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 144
  • Download : 0
개발자들은 소프트웨어 개발과 유지보수 작업 중 하나의 코드를 수정하는데 들이는 시간보다 이를 위해 코드를 탐색하고 이해하는데 더 많은 시간을 소모한다. 코드를 탐색하는 시간을 줄이기 위하여 기존 연구들은 데이터 마이닝과 통계적 언어모델 기법을 이용하여 수정할 코드를 추천하여 왔다. 그러나 이 경우 모델의 학습 데이터와 입력되는 데이터가 정확하게 일치하지 않으면 추천이 발생하지 않는다. 이 논문에서 우리는 딥러닝의 기법 중 하나인 Recurrent Neural Networks에 동작기록을 학습시켜 기존 연구의 상기 문제점 없이 수정할 코드의 위치를 추천하는 방법을 제안한다. 제안 방법은 RNN과 동작기록을 활용한 추천 기법으로 평균 약 91%의 정확도와 71%의 재현율을 달성함으로써 기존의 추천방법보다 코드 탐색 시간을 더욱 줄일 수 있게 해 준다.
Publisher
한국정보처리학회
Issue Date
2018-12
Citation

정보처리학회논문지. 소프트웨어 및 데이터 공학, v.7, no.12, pp.461 - 468

ISSN
2287-5905
DOI
10.3745/KTSDE.2018.7.12.461
URI
http://hdl.handle.net/10203/268409
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0