Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 124
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Cheol-Hoko
dc.contributor.authorLee, Sunghoko
dc.contributor.authorKang, Gil-Seongko
dc.contributor.authorLee, Youn-Kiko
dc.contributor.authorPark, Gwan Gyuko
dc.contributor.authorLee, Doh C.ko
dc.contributor.authorJoh, Han-Ikko
dc.date.accessioned2019-10-14T08:20:05Z-
dc.date.available2019-10-14T08:20:05Z-
dc.date.created2019-10-14-
dc.date.created2019-10-14-
dc.date.created2019-10-14-
dc.date.issued2019-07-
dc.identifier.citationAPPLIED CATALYSIS B-ENVIRONMENTAL, v.258-
dc.identifier.issn0926-3373-
dc.identifier.urihttp://hdl.handle.net/10203/267953-
dc.description.abstractHydrogen evolution reaction (HER) activity of the molybdenum sulfide-based electrocatalysts originates from diverse types of active sulfur (S) sites, different S configurations, the ratio of molybdenum to S, and the crystallinity. The bridging S-2(2-) has been considered as the major active site for HER. However, to realize more efficient electrocatalysts, newer architectures based on molybdenum sulfide are required to allow more active S sites beyond the endemic structural limits. Hence, the facile aging approach is used to maximize the bridging S-2(2-) in amorphous molybdenum sulfide by adding (NH4)(2)S-x, leading to the highest proportion of bridging S-2(2-) (up to 67%). Additionally, the effect of S configuration on HER activity in molybdenum sulfide is systematically studied by controlling of the amount of bridging S-2(2-). The bridging S-rich electrocatalysts exhibits an excellent HER activity with low onset potential of -96 mV and Tafel slope of 46 mV dec(-1), and stability for 1000 cycles.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleInsight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction-
dc.typeArticle-
dc.identifier.wosid000487570000053-
dc.identifier.scopusid2-s2.0-85070057024-
dc.type.rimsART-
dc.citation.volume258-
dc.citation.publicationnameAPPLIED CATALYSIS B-ENVIRONMENTAL-
dc.identifier.doi10.1016/j.apcatb.2019.117995-
dc.contributor.localauthorLee, Doh C.-
dc.contributor.nonIdAuthorLee, Sungho-
dc.contributor.nonIdAuthorLee, Youn-Ki-
dc.contributor.nonIdAuthorPark, Gwan Gyu-
dc.contributor.nonIdAuthorJoh, Han-Ik-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorBridging sulfur-
dc.subject.keywordAuthorAmorphous molybdenum sulfide-
dc.subject.keywordAuthorElectrocatalyst-
dc.subject.keywordAuthorHydrogen evolution reaction-
dc.subject.keywordPlusEDGE SITES-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusTHIOMOLYBDATE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusFILMS-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0