Directed self-assembly of a helical nanofilament liquid crystal phase for use as structural color reflectors

Cited 29 time in webofscience Cited 21 time in scopus
  • Hit : 528
  • Download : 204
DC FieldValueLanguage
dc.contributor.authorPark, Wongiko
dc.contributor.authorHa, Taewooko
dc.contributor.authorKim, Teun-Teunko
dc.contributor.authorZep, Annako
dc.contributor.authorAhn, Hyungjuko
dc.contributor.authorShin, Tae Jooko
dc.contributor.authorSim, Kyung Ikko
dc.contributor.authorJung, Taek Sunko
dc.contributor.authorKim, Jae Hoonko
dc.contributor.authorPociecha, Damianko
dc.contributor.authorGorecka, Ewako
dc.contributor.authorYoon, Dong Kiko
dc.date.accessioned2019-09-10T03:20:02Z-
dc.date.available2019-09-10T03:20:02Z-
dc.date.created2019-09-09-
dc.date.created2019-09-09-
dc.date.created2019-09-09-
dc.date.issued2019-08-
dc.identifier.citationNPG ASIA MATERIALS, v.11-
dc.identifier.issn1884-4049-
dc.identifier.urihttp://hdl.handle.net/10203/267443-
dc.description.abstractThe fabrication of molecular structures with a desired morphology, e.g., nanotubes, nanoribbons, nanosprings, and sponges, is essential for the advancement of nanotechnology. Unfortunately, realization of this objective is expensive and complicated. Here, we report that irradiating a film comprising azobenzene derivatives with UV light produces oriented arrays of helical nanofilaments via the photoisomerization-induced Weigert effect. As a result, structural colors are observed due to the extrinsic chiral reflection in the visible wavelength range, and the reflected color can be tuned by adjusting the molecular length of the azobenzene derivative. This simple fabrication method can be used for fabricating large, reversible, and patternable color reflectors, providing a new platform for interference-based structural coloration as it exists in nature, such as morpho butterflies, green-winged teal, and various beetles.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleDirected self-assembly of a helical nanofilament liquid crystal phase for use as structural color reflectors-
dc.typeArticle-
dc.identifier.wosid000481937700001-
dc.identifier.scopusid2-s2.0-85070750695-
dc.type.rimsART-
dc.citation.volume11-
dc.citation.publicationnameNPG ASIA MATERIALS-
dc.identifier.doi10.1038/s41427-019-0146-6-
dc.contributor.localauthorYoon, Dong Ki-
dc.contributor.nonIdAuthorHa, Taewoo-
dc.contributor.nonIdAuthorKim, Teun-Teun-
dc.contributor.nonIdAuthorZep, Anna-
dc.contributor.nonIdAuthorAhn, Hyungju-
dc.contributor.nonIdAuthorShin, Tae Joo-
dc.contributor.nonIdAuthorSim, Kyung Ik-
dc.contributor.nonIdAuthorJung, Taek Sun-
dc.contributor.nonIdAuthorKim, Jae Hoon-
dc.contributor.nonIdAuthorPociecha, Damian-
dc.contributor.nonIdAuthorGorecka, Ewa-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusWEYL POINTS-
dc.subject.keywordPlusCONFINEMENT-
dc.subject.keywordPlusLIGHT-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 29 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0