Lithium-mediated ammonia synthesis from water and nitrogen: a membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system

Cited 28 time in webofscience Cited 17 time in scopus
  • Hit : 430
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Kwiyongko
dc.contributor.authorChen, Yifuko
dc.contributor.authorHan, Jong-Inko
dc.contributor.authorYoon, Hyung Chulko
dc.contributor.authorLi, Wenzhenko
dc.date.accessioned2019-08-05T06:20:44Z-
dc.date.available2019-08-05T06:20:44Z-
dc.date.created2019-08-05-
dc.date.created2019-08-05-
dc.date.issued2019-07-
dc.identifier.citationGREEN CHEMISTRY, v.21, no.14, pp.3839 - 3845-
dc.identifier.issn1463-9262-
dc.identifier.urihttp://hdl.handle.net/10203/263990-
dc.description.abstractThe lithium-mediated pathway provides a promising way for facile and selective dissociation of nitrogen for ammonia synthesis. However, the prevailing electro-deposition of lithium, especially when coupled to the anodic oxygen evolution from water or hydroxide, presents disadvantages including the use of expensive Li-ion conducting ceramics (LISICON) or high temperature operation of molten salts. In this study, a membrane-free approach based on the immiscibility of aqueous/organic electrolytes was adopted for lithium electro-deposition, which could be utilized for subsequent nitridation and ammonia synthesis. We found that a biphasic system of aqueous 1 M LiClO4 and 1 M LiClO4/propylene carbonate reinforced with PMMA (poly(methyl methacrylate)) acts the same as a LISICON-based aqueous/organic hybrid electrolyte system, but without any physical membrane. With a fairly high faradaic efficiency (FE) of 57.2% and a production rate of 1.21 x 10(-9) mol cm(-2) s(-1) for ammonia synthesis, this membrane-free approach and its application to ammonia synthesis provide an innovative way to the advancements in next-generation energy storage technologies.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleLithium-mediated ammonia synthesis from water and nitrogen: a membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system-
dc.typeArticle-
dc.identifier.wosid000475506200011-
dc.identifier.scopusid2-s2.0-85069458695-
dc.type.rimsART-
dc.citation.volume21-
dc.citation.issue14-
dc.citation.beginningpage3839-
dc.citation.endingpage3845-
dc.citation.publicationnameGREEN CHEMISTRY-
dc.identifier.doi10.1039/c9gc01338e-
dc.contributor.localauthorHan, Jong-In-
dc.contributor.nonIdAuthorKim, Kwiyong-
dc.contributor.nonIdAuthorChen, Yifu-
dc.contributor.nonIdAuthorYoon, Hyung Chul-
dc.contributor.nonIdAuthorLi, Wenzhen-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusELECTROCHEMICAL SYNTHESIS-
dc.subject.keywordPlusAMBIENT-TEMPERATURE-
dc.subject.keywordPlusELECTROSYNTHESIS-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusN-2-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusPRESSURE-
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0