Half-Pipe Palladium Nanotube-Based Hydrogen Sensor Using a Suspended Nanofiber Scaffold

Cited 39 time in webofscience Cited 32 time in scopus
  • Hit : 336
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorCho, Minkyuko
dc.contributor.authorZhu, Jianxiongko
dc.contributor.authorKim, Hyeonggyunko
dc.contributor.authorKang, Kyungnamko
dc.contributor.authorPark, Inkyuko
dc.date.accessioned2019-07-18T05:33:46Z-
dc.date.available2019-07-18T05:33:46Z-
dc.date.created2019-07-12-
dc.date.created2019-07-12-
dc.date.issued2019-04-
dc.identifier.citationACS APPLIED MATERIALS INTERFACES, v.11, no.14, pp.13343 - 13349-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/263335-
dc.description.abstractA half-pipe palladium nanotube network (H-PdNTN) structure was developed for high-performance hydrogen (H-2) sensor applications. To fabricate the sensor, suspended poly(vinyl alcohol) (PVA) nanofiber bundles were electrospun on a conductive substrate, followed by a palladium (Pd) deposition on top of the PVA nanofiber bundles. Then, Pd-deposited PVA nanofibers were transferred to a host substrate, and the PVA nanofiber templates were selectively removed. Various material analyses confirmed that the PVA nanofibers were successfully dissolved leaving a half-pipe-shaped Pd nanotube network. The fabricated Pd nanotube-based sensors were tested for H-2 responses with different gas concentrations. The 4 nm thick sensor showed the highest response (Delta R/R-0) to H-2 gas. Platinum (Pt) decoration of the sensor showed an improved response speed compared to that of the pristine sensor via the catalytic function of Pt. Additionally, the sensor exhibited good H-2 selectivity against other interfering gases. The H-PdNTN H-2 sensor provides a facile and cost-effective way to fabricate high-performance H-2 sensors.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleHalf-Pipe Palladium Nanotube-Based Hydrogen Sensor Using a Suspended Nanofiber Scaffold-
dc.typeArticle-
dc.identifier.wosid000464769400033-
dc.identifier.scopusid2-s2.0-85063583197-
dc.type.rimsART-
dc.citation.volume11-
dc.citation.issue14-
dc.citation.beginningpage13343-
dc.citation.endingpage13349-
dc.citation.publicationnameACS APPLIED MATERIALS INTERFACES-
dc.identifier.doi10.1021/acsami.8b19848-
dc.contributor.localauthorPark, Inkyu-
dc.contributor.nonIdAuthorCho, Minkyu-
dc.contributor.nonIdAuthorZhu, Jianxiong-
dc.contributor.nonIdAuthorKim, Hyeonggyun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorelectrospinning-
dc.subject.keywordAuthorelectrospun nanofiber-
dc.subject.keywordAuthormetal nanostructure-
dc.subject.keywordAuthorpalladium nanotube-
dc.subject.keywordAuthorhydrogen sensor-
dc.subject.keywordPlusOPTICAL-FIBER SENSOR-
dc.subject.keywordPlusOXIDE THIN-FILM-
dc.subject.keywordPlusGAS-SENSOR-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusNANOWIRE-
dc.subject.keywordPlusPERFORMANCE-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 39 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0