Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study

Cited 22 time in webofscience Cited 0 time in scopus
  • Hit : 307
  • Download : 86
DC FieldValueLanguage
dc.contributor.authorKwon, Soonilko
dc.contributor.authorHong, Joonkiko
dc.contributor.authorChoi, Eue-Keunko
dc.contributor.authorLee, Euijaeko
dc.contributor.authorHostallero, David Earlko
dc.contributor.authorKang, Wan Juko
dc.contributor.authorLee, Byunghwanko
dc.contributor.authorJeong, Eui-Rimko
dc.contributor.authorKoo, Bon-Kwonko
dc.contributor.authorOh, Seilko
dc.contributor.authorYi, Yungko
dc.date.accessioned2019-07-08T07:30:08Z-
dc.date.available2019-07-08T07:30:08Z-
dc.date.created2019-07-01-
dc.date.created2019-07-01-
dc.date.created2019-07-01-
dc.date.created2019-07-01-
dc.date.created2019-07-01-
dc.date.created2019-07-01-
dc.date.issued2019-06-
dc.identifier.citationJMIR MHEALTH AND UHEALTH, v.7, no.6-
dc.identifier.issn2291-5222-
dc.identifier.urihttp://hdl.handle.net/10203/263106-
dc.description.abstractBackground: Wearable devices have evolved as screening tools for atrial fibrillation (AF). A photoplethysmographic (PPG) AF detection algorithm was developed and applied to a convenient smartphone-based device with good accuracy. However, patients with paroxysmal AF frequently exhibit premature atrial complexes (PACs), which result in poor unmanned AF detection, mainly because of rule-based or handcrafted machine learning techniques that are limited in terms of diagnostic accuracy and reliability. Objective: This study aimed to develop deep learning (DL) classifiers using PPG data to detect AF from the sinus rhythm (SR) in the presence of PACs after successful cardioversion. Methods: We examined 75 patients with AF who underwent successful elective direct-current cardioversion (DCC). Electrocardiogram and pulse oximetry data over a 15-min period were obtained before and after DCC and labeled as AF or SR. A 1-dimensional convolutional neural network (1D-CNN) and recurrent neural network (RNN) were chosen as the 2 DL architectures. The PAC indicator estimated the burden of PACs on the PPG dataset We defined a metric called the confidence level (CL) of AF or SR diagnosis and compared the CLs of true and false diagnoses. We also compared the diagnostic performance of 1D-CNN and RNN with previously developed AF detectors (support vector machine with root-mean-square of successive difference of RR intervals and Shannon entropy, autocorrelation, and ensemble by combining 2 previous methods) using 10 5-fold cross-validation processes. Results: Among the 14,298 training samples containing PPG data, 7157 samples were obtained during the post-DCC period. The PAC indicator estimated 29.79% (2132/7157) of post-DCC samples had PACs. The diagnostic accuracy of AF versus SR was 99.32% (70,925/71,410) versus 95.85% (68,602/71,570) in 1D-CNN and 98.27% (70,176/71,410) versus 96.04% (68,736/71,570) in RNN methods. The area under receiver operating characteristic curves of the 2 DL classifiers was 0.998 (95% CI 0.995-1.000) for 1D-CNN and 0.996 (95% CI 0.993-0.998) for RNN, which were significantly higher than other AF detectors (P<.001). If we assumed that the dataset could emulate a sufficient number of patients in training, both DL classifiers improved their diagnostic performances even further especially for the samples with a high burden of PACs. The average CLs for true versus false classification were 98.56% versus 78.75% for 1D-CNN and 98.37% versus 82.57% for RNN (P<.001 for all cases). Conclusions: New DL classifiers could detect AF using PPG monitoring signals with high diagnostic accuracy even with frequent PACs and could outperform previously developed AF detectors. Although diagnostic performance decreased as the burden of PACs increased, performance improved when samples from more patients were trained. Moreover, the reliability of the diagnosis could be indicated by the CL. Wearable devices sensing PPG signals with DL classifiers should be validated as tools to screen for AF.-
dc.languageEnglish-
dc.publisherJMIR PUBLICATIONS, INC-
dc.titleDeep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study-
dc.typeArticle-
dc.identifier.wosid000471679300001-
dc.identifier.scopusid2-s2.0-85070565179-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue6-
dc.citation.publicationnameJMIR MHEALTH AND UHEALTH-
dc.identifier.doi10.2196/12770-
dc.contributor.localauthorYi, Yung-
dc.contributor.nonIdAuthorKwon, Soonil-
dc.contributor.nonIdAuthorHong, Joonki-
dc.contributor.nonIdAuthorChoi, Eue-Keun-
dc.contributor.nonIdAuthorLee, Euijae-
dc.contributor.nonIdAuthorHostallero, David Earl-
dc.contributor.nonIdAuthorLee, Byunghwan-
dc.contributor.nonIdAuthorJeong, Eui-Rim-
dc.contributor.nonIdAuthorKoo, Bon-Kwon-
dc.contributor.nonIdAuthorOh, Seil-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthoratrial fibrillation-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorphotoplethysmography-
dc.subject.keywordAuthorpulse oximetly-
dc.subject.keywordAuthordiagnosis-
dc.subject.keywordPlusSTROKE PATIENTS-
dc.subject.keywordPlusRISK-FACTORS-
dc.subject.keywordPlusPREVALENCE-
dc.subject.keywordPlusTRENDS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 22 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0