Neurostimulation Reveals Context-Dependent Arbitration Between Model-Based and Model-Free Reinforcement Learning

Cited 11 time in webofscience Cited 8 time in scopus
  • Hit : 691
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorWeissengruber, Sebastianko
dc.contributor.authorLee, Sang Wanko
dc.contributor.authorO’Doherty, John P.ko
dc.contributor.authorRuff, Christian C.ko
dc.date.accessioned2019-06-28T05:30:03Z-
dc.date.available2019-06-28T05:30:03Z-
dc.date.created2019-06-03-
dc.date.created2019-06-03-
dc.date.created2019-06-03-
dc.date.created2019-06-03-
dc.date.created2019-06-03-
dc.date.created2019-06-03-
dc.date.issued2019-11-
dc.identifier.citationCEREBRAL CORTEX, v.29, no.11, pp.4850 - 4862-
dc.identifier.issn1047-3211-
dc.identifier.urihttp://hdl.handle.net/10203/262853-
dc.description.abstractWhile it is established that humans use model-based (MB) and model-free (MF) reinforcement learning in a complementary fashion, much less is known about how the brain determines which of these systems should control behavior at any given moment. Here we provide causal evidence for a neural mechanism that acts as a context-dependent arbitrator between both systems. We applied excitatory and inhibitory transcranial direct current stimulation over a region of the left ventrolateral prefrontal cortex previously found to encode the reliability of both learning systems. The opposing neural interventions resulted in a bidirectional shift of control between MB and MF learning. Stimulation also affected the sensitivity of the arbitration mechanism itself, as it changed how often subjects switched between the dominant system over time. Both of these effects depended on varying task contexts that either favored MB or MF control, indicating that this arbitration mechanism is not context-invariant but flexibly incorporates information about current environmental demands.-
dc.languageEnglish-
dc.publisherOXFORD UNIV PRESS INC-
dc.titleNeurostimulation Reveals Context-Dependent Arbitration Between Model-Based and Model-Free Reinforcement Learning-
dc.typeArticle-
dc.identifier.wosid000506813700028-
dc.identifier.scopusid2-s2.0-85076871852-
dc.type.rimsART-
dc.citation.volume29-
dc.citation.issue11-
dc.citation.beginningpage4850-
dc.citation.endingpage4862-
dc.citation.publicationnameCEREBRAL CORTEX-
dc.identifier.doi10.1093/cercor/bhz019-
dc.contributor.localauthorLee, Sang Wan-
dc.contributor.nonIdAuthorWeissengruber, Sebastian-
dc.contributor.nonIdAuthorO’Doherty, John P.-
dc.contributor.nonIdAuthorRuff, Christian C.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorgoal-directed-
dc.subject.keywordAuthorhabitual-
dc.subject.keywordAuthorreinforcement learning-
dc.subject.keywordAuthortDCS-
dc.subject.keywordAuthorventrolateral PFC-
dc.subject.keywordPlusDIRECT-CURRENT STIMULATION-
dc.subject.keywordPlusNONINVASIVE BRAIN-STIMULATION-
dc.subject.keywordPlusMOTOR CORTEX-
dc.subject.keywordPlusPREFRONTAL CORTEX-
dc.subject.keywordPlusFMRI-
dc.subject.keywordPlusTDCS-
dc.subject.keywordPlusEXCITABILITY-
dc.subject.keywordPlusTMS-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusPROTECTS-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0