Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree

Cited 136 time in webofscience Cited 0 time in scopus
  • Hit : 241
  • Download : 0
With the emergence of byte-addressable persistent memory (PM), a cache line, instead of a page, is expected to be the unit of data transfer between volatile and nonvolatile devices, but the failure-atomicity of write operations is guaranteed in the granularity of 8 bytes rather than cache lines. This granularity mismatch problem has generated interest in redesigning block-based data structures such as B+-trees. However, various methods of modifying B+-trees for PM degrade the efficiency of B+trees, and attempts have been made to use in-memory data structures for PM. In this study, we develop Failure-Atomic ShifT (FAST) and Failure-Atomic In-place Rebalance (FAIR) algorithms to resolve the granularity mismatch problem. Every 8-byte store instruction used in the FAST and FAIR algorithms transforms a B+-tree into another consistent state or a transient inconsistent state that read operations can tolerate. By making read operations tolerate transient inconsistency, we can avoid expensive copy-on-write, logging, and even the necessity of read latches so that read transactions can be non-blocking. Our experimental results show that legacy B+-trees with FAST and FAIR schemes outperform the state-of-the-art persistent indexing structures by a large margin.
Publisher
USENIX Association
Issue Date
2018-02
Language
English
Citation

16th USENIX Conference on File and Storage Technologies, FAST 2018, pp.187 - 200

URI
http://hdl.handle.net/10203/262704
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 136 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0