Electron spin relaxations of phosphorus donors in bulk silicon under large electric field

Cited 2 time in webofscience Cited 1 time in scopus
  • Hit : 440
  • Download : 71
DC FieldValueLanguage
dc.contributor.authorPark, Daniel K.ko
dc.contributor.authorPark, Sejunko
dc.contributor.authorJee, Hyejungko
dc.contributor.authorLee, Soonchilko
dc.date.accessioned2019-06-14T00:30:04Z-
dc.date.available2019-06-14T00:30:04Z-
dc.date.created2019-03-11-
dc.date.created2019-03-11-
dc.date.created2019-03-11-
dc.date.created2019-03-11-
dc.date.issued2019-02-
dc.identifier.citationSCIENTIFIC REPORTS, v.9, pp.2951-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/10203/262604-
dc.description.abstractModulation of donor electron wavefunction via electric fields is vital to quantum computing architectures based on donor spins in silicon. For practical and scalable applications, the donor-based qubits must retain sufficiently long coherence times in any realistic experimental conditions. Here, we present pulsed electron spin resonance studies on the longitudinal (T-1) and transverse (T-2) relaxation times of phosphorus donors in bulk silicon with various electric field strengths up to near avalanche breakdown in high magnetic fields of about 1.2 T and low temperatures of about 8 K. We find that the T-1 relaxation time is significantly reduced under large electric fields due to electric current, and T-2 is affected as the T-1 process can dominate decoherence. Furthermore, we show that the magnetoresistance effect in silicon can be exploited as a means to combat the reduction in the coherence times. While qubit coherence times must be much longer than quantum gate times, electrically accelerated T-1 can be found useful when qubit state initialization relies on thermal equilibration.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleElectron spin relaxations of phosphorus donors in bulk silicon under large electric field-
dc.typeArticle-
dc.identifier.wosid000459799800100-
dc.identifier.scopusid2-s2.0-85062262402-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.beginningpage2951-
dc.citation.publicationnameSCIENTIFIC REPORTS-
dc.identifier.doi10.1038/s41598-019-39613-4-
dc.contributor.localauthorLee, Soonchil-
dc.contributor.nonIdAuthorPark, Daniel K.-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusLATTICE RELAXATION-
dc.subject.keywordPlusRESONANCE EXPERIMENTS-
dc.subject.keywordPlusREADOUT-
dc.subject.keywordPlusSTATES-
dc.subject.keywordPlusQUBIT-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0