Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries

Cited 68 time in webofscience Cited 0 time in scopus
  • Hit : 232
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorShin, Jaehoko
dc.contributor.authorChoi, Dong Shinko
dc.contributor.authorLee, Hyeon Jeongko
dc.contributor.authorJung, Yousungko
dc.contributor.authorChoi, Jang Wookko
dc.date.accessioned2019-05-28T08:25:26Z-
dc.date.available2019-05-28T08:25:26Z-
dc.date.created2019-05-28-
dc.date.issued2019-04-
dc.identifier.citationADVANCED ENERGY MATERIALS, v.9, no.14-
dc.identifier.issn1614-6832-
dc.identifier.urihttp://hdl.handle.net/10203/262211-
dc.description.abstractAqueous zinc ion batteries (AZIBs) are steadily gaining attention based on their attractive merits regarding cost and safety. However, there are many obstacles to overcome, especially in terms of finding suitable cathode materials and elucidating their reaction mechanisms. Here, a mixed-valence vanadium oxide, V6O13, that functions as a stable cathode material in mildly acidic aqueous electrolytes is reported. Paired with a zinc metal anode, this material exhibits performance metrics of 360 mAh g(-1) at 0.2 A g(-1), 92% capacity retention after 2000 cycles, and 145 mAh g(-1) at a current density of 24.0 A g(-1). A combination of experiments and density functional theory calculations suggests that hydrated intercalation, where water molecules are cointercalated with Zn ions upon discharge, accounts for the aforementioned electrochemical performance. This intercalation mechanism facilitates Zn ion diffusion throughout the host lattice and electrode-electrolyte interface via electrostatic shielding and concurrent structural stabilization. Through a correlation of experimental data and theoretical calculations, the promise of utilizing hydrated intercalation as a means to achieve high-performance AZIBs is demonstrated.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleHydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries-
dc.typeArticle-
dc.identifier.wosid000467132300014-
dc.identifier.scopusid2-s2.0-85061914755-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue14-
dc.citation.publicationnameADVANCED ENERGY MATERIALS-
dc.identifier.doi10.1002/aenm.201900083-
dc.contributor.localauthorJung, Yousung-
dc.contributor.nonIdAuthorShin, Jaeho-
dc.contributor.nonIdAuthorLee, Hyeon Jeong-
dc.contributor.nonIdAuthorChoi, Jang Wook-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthoraqueous batteries-
dc.subject.keywordAuthordensity functional theory-
dc.subject.keywordAuthorhydrated intercalation-
dc.subject.keywordAuthorvanadium oxide-
dc.subject.keywordAuthorzinc-
dc.subject.keywordPlusX-RAY-ABSORPTION-
dc.subject.keywordPlusPRUSSIAN BLUE ANALOG-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusCRYSTAL WATER-
dc.subject.keywordPlusV6O13-
dc.subject.keywordPlusDIFFRACTION-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordPlusMG2+-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 68 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0