Melamine-promoted formation of bright and stable DNA-silver nanoclusters and their antimicrobial properties

Cited 10 time in webofscience Cited 7 time in scopus
  • Hit : 391
  • Download : 0
A new method has been developed for the preparation of brightly fluorescent and stable DNA-silver nanoclusters (DNA-AgNCs). The approach takes advantage of specific interactions occurring between melamine and thymine residues in a DNA template. These interactions cause the formation of a melamine-DNA-AgNC complex (Mel-DNA-AgNCs), in which a change in the environment of the DNA template causes binding of additional Ag+ and an enhancement in the fluorescence efficiency and stability. The effects of the nature of the template DNA, DNA:Ag+:NaBH4 ratio, pH and temperature were systematically assessed in order to maximize the melamine-promoted fluorescence enhancement. The results show that the Mel-DNA-AgNCs, generated under the optimal conditions, exhibit a ca. 3-fold larger fluorescence efficiency and long-term stability (70 d) in contrast to those of DNA-AgNCs in the absence of melamine. Importantly, the bright and stable Mel-DNA-AgNCs exhibit antimicrobial activities against Gram-positive and Gram-negative bacteria that are superior to those of DNA-AgNCs alone. To the best of our knowledge, this is the first report describing the synthesis of DNA-AgNCs that have improved fluorescence efficiencies and that function as effective antimicrobial agents.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2019-04
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS CHEMISTRY B, v.7, no.15, pp.2512 - 2517

ISSN
2050-750X
DOI
10.1039/c8tb03166e
URI
http://hdl.handle.net/10203/261867
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0