Towards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems

Cited 76 time in webofscience Cited 61 time in scopus
  • Hit : 461
  • Download : 924
DC FieldValueLanguage
dc.contributor.authorSong, Jun Taeko
dc.contributor.authorSong, Hakhyeonko
dc.contributor.authorKim, Beomilko
dc.contributor.authorOh, Jihunko
dc.date.accessioned2019-05-10T05:10:22Z-
dc.date.available2019-05-10T05:10:22Z-
dc.date.created2019-05-10-
dc.date.created2019-05-10-
dc.date.issued2019-03-
dc.identifier.citationCATALYSTS, v.9, no.3-
dc.identifier.issn2073-4344-
dc.identifier.urihttp://hdl.handle.net/10203/261845-
dc.description.abstractElectrochemical CO2 conversion offers a promising route for value-added products such as formate, carbon monoxide, and hydrocarbons. As a result of the highly required overpotential for CO2 reduction, researchers have extensively studied the development of catalyst materials in a typical H-type cell, utilizing a dissolved CO2 reactant in the liquid phase. However, the low CO2 solubility in an aqueous solution has critically limited productivity, thereby hindering its practical application. In efforts to realize commercially available CO2 conversion, gas-phase reactor systems have recently attracted considerable attention. Although the achieved performance to date reflects a high feasibility, further development is still required in order for a well-established technology. Accordingly, this review aims to promote the further study of gas-phase systems for CO2 reduction, by generally examining some previous approaches from liquid-phase to gas-phase systems. Finally, we outline major challenges, with significant lessons for practical CO2 conversion systems.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleTowards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems-
dc.typeArticle-
dc.identifier.wosid000465012800018-
dc.identifier.scopusid2-s2.0-85064664494-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue3-
dc.citation.publicationnameCATALYSTS-
dc.identifier.doi10.3390/catal9030224-
dc.contributor.localauthorOh, Jihun-
dc.contributor.nonIdAuthorKim, Beomil-
dc.description.isOpenAccessY-
dc.type.journalArticleReview-
dc.subject.keywordAuthorCO2 reduction-
dc.subject.keywordAuthorcatalysts-
dc.subject.keywordAuthorliquid-phase reactor-
dc.subject.keywordAuthorH-type cell-
dc.subject.keywordAuthorgas-phase reactor-
dc.subject.keywordAuthormembrane electrode assembly (MEA) cell-
dc.subject.keywordAuthormicrofluidic cell-
dc.subject.keywordAuthorgas diffusion electrode (GDE)-
dc.subject.keywordAuthorreview-
dc.subject.keywordPlusSOLID POLYMER ELECTROLYTE-
dc.subject.keywordPlusCARBON-DIOXIDE REDUCTION-
dc.subject.keywordPlusELECTROCATALYTIC REDUCTION-
dc.subject.keywordPlusDIFFUSION ELECTRODES-
dc.subject.keywordPlusHIGH-EFFICIENCY-
dc.subject.keywordPlusMETHANOL GENERATION-
dc.subject.keywordPlusSELECTIVE FORMATION-
dc.subject.keywordPlusCURRENT-DENSITY-
dc.subject.keywordPlusGASEOUS CO2-
dc.subject.keywordPlusELECTROREDUCTION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 76 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0