Irradiation-enhanced interdiffusion in the diffusion zone of U-Mo dispersion fuel in Al

Cited 23 time in webofscience Cited 24 time in scopus
  • Hit : 207
  • Download : 0
Uranium-molybdenum (U-Mo) alloy fuel particles dispersed in an aluminum (Al) matrix, designated as U-Mo/Al dispersion fuel, is in the development stage in the worldwide RERTR (Reduced Enrichment for Research and Test Reactors) program. The main issue in developing U-Mo/Al dispersion fuel is the diffusion reaction occurring at the interface between the fuel particles and matrix. To accurately analyze fuel performance, a model to predict the diffusion kinetics is necessary. For this purpose, the authors developed a diffusion layer growth rate correlation for out-of-pile annealing tests and a similar correlation for in-reactor tests. The correlation for in-reactor tests is considerably different from that of out-of-pile tests because it contains factors that amplify diffusion kinetics by fission damage in the diffusion reaction zone. This irradiation enhancement was formulated by a combination of the fission rate in the fuel and fission fragment damage distribution in the diffusion reaction zone. Using a computer code, fission damage factors were obtained as a function of diffusion reaction layer thickness and composition. The model correlation was established and fitted to the in-reactor data. As a result of this data fitting, the interaction layer growth rate is found to be proportional to the square root of the fission fragment damage rate and to have a temperature dependence characterized by the effective activation energy of 46 to 76 kJ/mole, which is smaller by a factor of 4 to 7 than that of out-of-pile tests.
Publisher
SPRINGER
Issue Date
2006-12
Language
English
Article Type
Article; Proceedings Paper
Keywords

RADIATION; GLASSES; ION

Citation

JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, v.27, no.6, pp.614 - 621

ISSN
1547-7037
DOI
10.1361/154770306X153639
URI
http://hdl.handle.net/10203/255861
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 23 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0