Learning-Related Synaptic Growth Mediated by Internalization of Aplysia Cell Adhesion Molecule Is Controlled by Membrane Phosphatidylinositol 4,5-Bisphosphate Synthetic Pathway

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 204
  • Download : 0
Long-term facilitation in Aplysia is accompanied by the growth of new synaptic connections between the sensory and motor neurons of the gill-withdrawal reflex. One of the initial steps leading to the growth of these synapses is the internalization, induced by 5-HT, of the transmembrane isoform of Aplysia cell-adhesion molecule (TM-apCAM) from the plasma membrane of sensory neurons (Bailey et al., 1992). However, the mechanisms that govern the internalization of TM-apCAM and how this internalization is coupled to the molecular events that initiate the structural changes are not fully understood. Here, we report that the synthesis of membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P-2], which is known to be mediated by a signaling cascade through Aplysia Sec7 protein (ApSec7) and phosphatidylinositol-4-phosphate 5-kinase type I alpha (PIP5KI alpha) is required for both the internalization of TM-apCAM and the initiation of synaptic growth during 5-HT-induced long-term facilitation. Pharmacological blockade of PI(4,5) P2 synthesis by the application of the inhibitor phenylarsine oxide blocked the internalization of apCAM. Furthermore, perturbation of the endogenous activation of ApSec7 and its downstream target PIP5KI alpha also blocked 5-HT-mediated internalization of TM-apCAM and synaptic growth. Finally, long-term facilitation was specifically impaired by blocking the ApSec7 signaling pathway at sensory-to-motor neuron synapses. These data indicate that the ApSec7/PIP5KI alpha signaling pathway is actively recruited during learning-related 5-HT signaling and acts as a key regulator of apCAM internalization associated with the formation of new synaptic connections during long-term facilitation.
Publisher
SOC NEUROSCIENCE
Issue Date
2012-11
Language
English
Article Type
Article
Keywords

NUCLEOTIDE EXCHANGE FACTOR; LONG-TERM FACILITATION; STRUCTURAL-CHANGES; ACTIN CYTOSKELETON; SENSORY NEURONS; MEMORY STORAGE; SEC7 DOMAIN; ARF6; PROTEIN; ACTIVATION

Citation

JOURNAL OF NEUROSCIENCE, v.32, no.46, pp.16296 - 16296

ISSN
0270-6474
DOI
10.1523/JNEUROSCI.1872-12.2012
URI
http://hdl.handle.net/10203/255317
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0