Structural diversity and flexibility of diabodies

Cited 16 time in webofscience Cited 11 time in scopus
  • Hit : 6556
  • Download : 0
Diabodies are bispecific antibody fragments that have two antigen binding Fv domains. They are unique among hundreds of different formats of bispecific antibodies because they are small and rigid enough to be crystallized. Diabodies are generated by connecting variable regions of heavy and light chains by a peptide linker. Because of the short length of the linker, intramolecular association of the variable regions is not allowed. Instead, the variable regions from the different peptide chains associate together, forming a dimeric complex with two antigen binding sites. Previous crystallographic studies of diabodies demonstrate the extraordinary structural diversity of diabodies. They have also shown that the relative orientation and interaction of the two Fv domains in diabodies have substantial flexibility due to instability of the Fv interface. Introduction of site specific mutations and disulfide bridges can reduce flexibility and therefore increase rigidity and predictability of the diabody structures. These stabilized diabodies will be useful for future application to structural biology and protein nanotechnology.
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Issue Date
2019-02
Language
English
Article Type
Article
Citation

METHODS, v.154, pp.136 - 142

ISSN
1046-2023
DOI
10.1016/j.ymeth.2018.09.005
URI
http://hdl.handle.net/10203/250479
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0