Infrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes

Cited 20 time in webofscience Cited 15 time in scopus
  • Hit : 404
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBaek, Se Woongko
dc.contributor.authorOuellette, Olivierko
dc.contributor.authorJo, Jea Woongko
dc.contributor.authorChoi, Jongminko
dc.contributor.authorSeo, Ki-Wonko
dc.contributor.authorKim, Junghwanko
dc.contributor.authorSun, Binko
dc.contributor.authorLee, Sang Hoonko
dc.contributor.authorChoi, Min-Jaeko
dc.contributor.authorNam, Dae-Hyunko
dc.contributor.authorQuan, Li Nako
dc.contributor.authorKang, Juhoonko
dc.contributor.authorHoogland, Sjoerdko
dc.contributor.authorGarcia de Arguer, F. Pelayoko
dc.contributor.authorLee, Jung-Yongko
dc.contributor.authorSargent, Edward H.ko
dc.date.accessioned2019-01-23T05:51:09Z-
dc.date.available2019-01-23T05:51:09Z-
dc.date.created2019-01-07-
dc.date.issued2018-12-
dc.identifier.citationACS ENERGY LETTERS, v.3, no.12, pp.2908 - 2913-
dc.identifier.issn2380-8195-
dc.identifier.urihttp://hdl.handle.net/10203/249801-
dc.description.abstractEfficient infrared (IR) optoelectronic devices, crucial for emerging sensing applications and also for solar energy harvesting, demand high-conductivity IR-transparent electrodes. Here we present a new strategy, one based on oxide/metal/oxide multilayers, that enables highly transparent IR electrodes. Symmetry breaking in the oxide stack leads to broad and high transmittance from visible to IR wavelengths, while a low refractive index doped oxide as a front layer boosts IR transmittance. The combination of doped oxide and ultrathin metal film allows for low sheet resistance while maintaining IR transparency. We engineer the IR microcavity effect using the asymmetric multilayer approach to tailor the distribution of incident radiation to maximize IR absorption in the colloidal quantum dot (CQD) layer. As a result, the absorption-enhanced IR CQD solar cells exhibit a photoelectric conversion efficiency of 70% at a wavelength of 1.25 mu m, i.e., well within the spectral range in which silicon is blind.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleInfrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes-
dc.typeArticle-
dc.identifier.wosid000453805100008-
dc.identifier.scopusid2-s2.0-85058801955-
dc.type.rimsART-
dc.citation.volume3-
dc.citation.issue12-
dc.citation.beginningpage2908-
dc.citation.endingpage2913-
dc.citation.publicationnameACS ENERGY LETTERS-
dc.identifier.doi10.1021/acsenergylett.8b01878-
dc.contributor.localauthorLee, Jung-Yong-
dc.contributor.nonIdAuthorOuellette, Olivier-
dc.contributor.nonIdAuthorJo, Jea Woong-
dc.contributor.nonIdAuthorChoi, Jongmin-
dc.contributor.nonIdAuthorKim, Junghwan-
dc.contributor.nonIdAuthorSun, Bin-
dc.contributor.nonIdAuthorChoi, Min-Jae-
dc.contributor.nonIdAuthorNam, Dae-Hyun-
dc.contributor.nonIdAuthorQuan, Li Na-
dc.contributor.nonIdAuthorHoogland, Sjoerd-
dc.contributor.nonIdAuthorGarcia de Arguer, F. Pelayo-
dc.contributor.nonIdAuthorSargent, Edward H.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0