Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth

Cited 31 time in webofscience Cited 0 time in scopus
  • Hit : 503
  • Download : 191
DC FieldValueLanguage
dc.contributor.authorSong, Yosebko
dc.contributor.authorShin, Jongohko
dc.contributor.authorJin, Sangrakko
dc.contributor.authorLee, Jung-Kulko
dc.contributor.authorKim, Dong Ripko
dc.contributor.authorKim, Sun Changko
dc.contributor.authorCho, Suhyungko
dc.contributor.authorCho, Byung-Kwanko
dc.date.accessioned2018-12-20T05:10:02Z-
dc.date.available2018-12-20T05:10:02Z-
dc.date.created2018-12-03-
dc.date.created2018-12-03-
dc.date.created2018-12-03-
dc.date.issued2018-11-
dc.identifier.citationBMC GENOMICS, v.19-
dc.identifier.issn1471-2164-
dc.identifier.urihttp://hdl.handle.net/10203/247618-
dc.description.abstractBackgroundAcetogenic bacteria constitute promising biocatalysts for the conversion of CO2/H-2 or synthesis gas (H-2/CO/CO2) into biofuels and value-added biochemicals. These microorganisms are naturally capable of autotrophic growth via unique acetogenesis metabolism. Despite their biosynthetic potential for commercial applications, a systemic understanding of the transcriptional and translational regulation of the acetogenesis metabolism remains unclear.ResultsBy integrating genome-scale transcriptomic and translatomic data, we explored the regulatory logic of the acetogenesis to convert CO2 into biomass and metabolites in Eubacterium limosum. The results indicate that majority of genes associated with autotrophic growth including the Wood-Ljungdahl pathway, the reduction of electron carriers, the energy conservation system, and gluconeogenesis were transcriptionally upregulated. The translation efficiency of genes in cellular respiration and electron bifurcation was also highly enhanced. In contrast, the transcriptionally abundant genes involved in the carbonyl branch of the Wood-Ljungdahl pathway, as well as the ion-translocating complex and ATP synthase complex in the energy conservation system, showed decreased translation efficiency. The translation efficiencies of genes were regulated by 5UTR secondary structure under the autotrophic growth condition.ConclusionsThe results illustrated that the acetogenic bacteria reallocate protein synthesis, focusing more on the translation of genes for the generation of reduced electron carriers via electron bifurcation, rather than on those for carbon metabolism under autotrophic growth.-
dc.languageEnglish-
dc.publisherBMC-
dc.titleGenome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth-
dc.typeArticle-
dc.identifier.wosid000451055200001-
dc.identifier.scopusid2-s2.0-85057079990-
dc.type.rimsART-
dc.citation.volume19-
dc.citation.publicationnameBMC GENOMICS-
dc.identifier.doi10.1186/s12864-018-5238-0-
dc.contributor.localauthorKim, Sun Chang-
dc.contributor.localauthorCho, Byung-Kwan-
dc.contributor.nonIdAuthorLee, Jung-Kul-
dc.contributor.nonIdAuthorKim, Dong Rip-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAcetogenic bacteria-
dc.subject.keywordAuthorEubacterium limosum-
dc.subject.keywordAuthorGas fermentation-
dc.subject.keywordAuthorWood-Ljungdahl pathway-
dc.subject.keywordAuthorTranslation efficiency-
dc.subject.keywordPlusEUBACTERIUM-LIMOSUM KIST612-
dc.subject.keywordPlusWOOD-LJUNGDAHL PATHWAY-
dc.subject.keywordPlusENERGY-CONSERVATION-
dc.subject.keywordPlusCLOSTRIDIUM-LJUNGDAHLII-
dc.subject.keywordPlusN-10-FORMYLTETRAHYDROFOLATE SYNTHETASE-
dc.subject.keywordPlusRNA-SEQ-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusFERMENTATION-
dc.subject.keywordPlusCOMPLEXES-
dc.subject.keywordPlusMECHANISM-
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
107317.pdf(2.59 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 31 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0