Predicting event mentions based on a semantic analysis of microblogs for inter-region relationships

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 206
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJang, Gwanko
dc.contributor.authorMyaeng, Sung-Hyonko
dc.date.accessioned2018-12-20T05:08:55Z-
dc.date.available2018-12-20T05:08:55Z-
dc.date.created2018-12-03-
dc.date.created2018-12-03-
dc.date.created2018-12-03-
dc.date.issued2018-12-
dc.identifier.citationJOURNAL OF INFORMATION SCIENCE, v.44, no.6, pp.818 - 829-
dc.identifier.issn0165-5515-
dc.identifier.urihttp://hdl.handle.net/10203/247599-
dc.description.abstractAn ability to predict people's interests in different regions would be valuable to many applications including marketing and policymaking. We posit that social media plays an important role in capturing collective user interests in different regions and their dynamics over time and across regions. Event mentions in microblogs of social media like Twitter not only reflect the people's interests in different regions but also affect the posting of future messages as the content of microblogs propagates to others through an online social network. Differentiating from the various network analysis techniques that have been developed to capture people's interests and their propagation patterns, we propose an event mention prediction method that utilises an analysis of inter-region relationships. We first obtain regional user interests for each topic by applying Latent Dirichlet Allocation (LDA) to region-specific collections of tweets and then compute pairwise similarities among regions. The resulting similarity-based region network becomes the basis for constructing region groups through Markov Cluster Algorithm, which helps removing noise relationships among regions. We then propose a relatively simple regression technique to predict future event mentions in different regions. We demonstrate that the proposed method outperforms the state-of-the-art event prediction method, confirming that the novel method of constructing groups from region-based sub-topic interests indeed contributes to the increase in the prediction accuracy.-
dc.languageEnglish-
dc.publisherSAGE PUBLICATIONS LTD-
dc.titlePredicting event mentions based on a semantic analysis of microblogs for inter-region relationships-
dc.typeArticle-
dc.identifier.wosid000450345600007-
dc.identifier.scopusid2-s2.0-85056595516-
dc.type.rimsART-
dc.citation.volume44-
dc.citation.issue6-
dc.citation.beginningpage818-
dc.citation.endingpage829-
dc.citation.publicationnameJOURNAL OF INFORMATION SCIENCE-
dc.identifier.doi10.1177/0165551518761012-
dc.contributor.localauthorMyaeng, Sung-Hyon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorEvent mention prediction-
dc.subject.keywordAuthorinterest-based region network and clustering-
dc.subject.keywordAuthorsemantic analysis of microblog collections-
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0