Silicon nanowire-based ring-shaped tri-axial force sensor for smart integration on guidewire

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 116
  • Download : 0
A ring-shaped tri-axial force sensor with a 200 mu m x 200 mu m sensor area using silicon nanowires (SiNWs) as piezoresistive sensing elements is developed and characterized. The sensor comprises a suspended ring structure located at the center of four suspended beams that can be integrated on the distal tip of a guidewire by passing through the hollow core of the sensor. SiNWs with a length of 6 mu m and a cross section of 90 nm x 90 nm are embedded at the anchor of each silicon bridge along < 1 1 0 > direction as the piezoresistive sensing element. Finite element analysis has been used to determine the location of maximum stress and the simulation results are verified with the experimental measurements. Taking advantage of the high sensitivity of SiNWs, the fabricated ring-shaped sensor is capable of detecting small displacement in nanometer ranges with a sensitivity of 13.4 x 10(-3) mu m(-1) in the z-direction. This tri-axial force sensor also shows high linearity (>99.9%) to the applied load and no obvious hysteresis is observed. The developed SiNW-based tri-axial force sensor provides new opportunities to implement sensing capability on medical instruments such as guidewires and robotic surgical grippers, where ultra-miniaturization and high sensitivity are essential.
Publisher
IOP PUBLISHING LTD
Issue Date
2014-06
Language
English
Article Type
Article
Keywords

3-D TACTILE SENSOR; CARDIAC-CATHETERIZATION; CONTACT FORCE; ANGIOPLASTY; FABRICATION; PIEZORESISTANCE; MICROSYSTEMS; SURGERY; MRI

Citation

JOURNAL OF MICROMECHANICS AND MICROENGINEERING, v.24, no.6

ISSN
0960-1317
DOI
10.1088/0960-1317/24/6/065002
URI
http://hdl.handle.net/10203/245979
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0