Microfluidic on-chip immunohistochemistry directly from a paraffin-embedded section

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 529
  • Download : 0
We present here a novel microfluidic platform that can perform microfluidic on-chip immunohistochemistry (IHC) processes on a formalin-fixed paraffin-embedded section slide. Unlike previous microfluidic IHC studies, our microfluidic chip made of organic solvent-resistant polyurethane acrylate (PUA) is capable of conducting on-chip IHC processes consecutively. A narrow channel wall structure of the PUA chip shows effective sealing by pressure-based reversible assembly with a section slide. We performed both on-chip IHC and conventional IHC processes and compared the IHC results based on the immunostaining intensity. The result showed that the effects of the on-chip deparaffinization, antigen retrieval, and immunoreaction processes on the IHC result were equivalent to conventional methods while reducing the total process time to less than 1/2. The experiment with breast cancer tissue shows that human epidermal growth factor receptor 2 (HER2) classification can be performed by obtaining a clearly distinguishable immunostaining intensity according to the HER2 expression level. We expect our on-chip microfluidic platform to provide a facile technique suitable for miniaturized, automated, and precise diagnostic devices, including a point-of-care device. Published by AIP Publishing.
Publisher
AMER INST PHYSICS
Issue Date
2018-07
Language
English
Article Type
Article; Proceedings Paper
Citation

BIOMICROFLUIDICS, v.12, no.4, pp.044110

ISSN
1932-1058
DOI
10.1063/1.5042347
URI
http://hdl.handle.net/10203/245937
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0