Adsorbate-driven reactive interfacial Pt-NiO1-x nanostructure formation on the Pt3Ni(111) alloy surface

Cited 71 time in webofscience Cited 0 time in scopus
  • Hit : 314
  • Download : 286
DC FieldValueLanguage
dc.contributor.authorKim, Jeongjinko
dc.contributor.authorPark, Woong Hyeonko
dc.contributor.authorDoh, Won Huiko
dc.contributor.authorLee, Si Wooko
dc.contributor.authorNoh, Myung Cheolko
dc.contributor.authorGallet, Jean-Jacquesko
dc.contributor.authorBournel, Fabriceko
dc.contributor.authorKondoh, Hiroshiko
dc.contributor.authorMases, Kazuhikoko
dc.contributor.authorJung, Yousungko
dc.contributor.authorMun, Bongjin Simonko
dc.contributor.authorPark, Jeong Youngko
dc.date.accessioned2018-10-19T00:32:34Z-
dc.date.available2018-10-19T00:32:34Z-
dc.date.created2018-09-19-
dc.date.created2018-09-19-
dc.date.created2018-09-19-
dc.date.issued2018-07-
dc.identifier.citationSCIENCE ADVANCES, v.4, no.7-
dc.identifier.issn2375-2548-
dc.identifier.urihttp://hdl.handle.net/10203/245935-
dc.description.abstractThe origin of the synergistic catalytic effect between metal catalysts and reducible oxides has been debated for decades. Clarification of this effect, namely, the strong metal-support interaction (SMSI), requires an understanding of the geometric and electronic structures of metal-metal oxide interfaces under operando conditions. We show that the inherent lattice mismatch of bimetallic materials selectively creates surface segregation of subsurface metal atoms. Interfacial metal-metal oxide nanostructures are then formed under chemical reaction environments at ambient pressure, which thus increases the catalytic activity for the CO oxidation reaction. Our in situ surface characterizations using ambient-pressure scanning tunneling microscopy and ambient-pressure x-ray photoelectron spectroscopy exhibit (i) a Pt-skin layer on the Pt-Ni alloyed surface under ultrahigh vacuum, (ii) selective Ni segregation followed by the formation of NiO1-x clusters under oxygen gas, and (iii) the coexistence of NiO1-x clusters on the Pt-skin during the CO oxidation reaction. The formation of interfacial Pt-NiO1-x nanostructures is responsible for a highly efficient step in the CO oxidation reaction. Density functional theory calculations of the Pt3Ni(111) surface demonstrate that a CO molecule adsorbed on an exposed Pt atom with an interfacial oxygen from a segregated NiO1-x cluster has a low surface energy barrier of 0.37 eV, compared with 0.86 eV for the Pt(111) surface.-
dc.languageEnglish-
dc.publisherAMER ASSOC ADVANCEMENT SCIENCE-
dc.titleAdsorbate-driven reactive interfacial Pt-NiO1-x nanostructure formation on the Pt3Ni(111) alloy surface-
dc.typeArticle-
dc.identifier.wosid000443176100054-
dc.identifier.scopusid2-s2.0-85050164541-
dc.type.rimsART-
dc.citation.volume4-
dc.citation.issue7-
dc.citation.publicationnameSCIENCE ADVANCES-
dc.identifier.doi10.1126/sciadv.aat3151-
dc.contributor.localauthorJung, Yousung-
dc.contributor.localauthorPark, Jeong Young-
dc.contributor.nonIdAuthorKim, Jeongjin-
dc.contributor.nonIdAuthorDoh, Won Hui-
dc.contributor.nonIdAuthorLee, Si Woo-
dc.contributor.nonIdAuthorGallet, Jean-Jacques-
dc.contributor.nonIdAuthorBournel, Fabrice-
dc.contributor.nonIdAuthorKondoh, Hiroshi-
dc.contributor.nonIdAuthorMases, Kazuhiko-
dc.contributor.nonIdAuthorMun, Bongjin Simon-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNEAR-AMBIENT PRESSURE-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusCARBON-MONOXIDE-
dc.subject.keywordPlusCO OXIDATION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusSEGREGATION-
dc.subject.keywordPlusADSORPTION-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
106240.pdf(1.16 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 71 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0