Definable relations in finite-dimensional subspace lattices with involution

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 475
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHerrmann, Christianko
dc.contributor.author마틴 지글러ko
dc.date.accessioned2018-10-19T00:30:38Z-
dc.date.available2018-10-19T00:30:38Z-
dc.date.created2018-09-19-
dc.date.created2018-09-19-
dc.date.created2018-09-19-
dc.date.issued2018-09-
dc.identifier.citationALGEBRA UNIVERSALIS, v.79, no.3-
dc.identifier.issn0002-5240-
dc.identifier.urihttp://hdl.handle.net/10203/245902-
dc.description.abstractFor a large class of finite dimensional inner product spaces V, over division *- rings F, we consider definable relations on the subspace lattice L(V) of V, endowed with the operation of taking orthogonals. In particular, we establish translations between the relevant first order languages, in order to associate these relations with definable and invariant relations on F- focussing on the quantification type of defining formulas. As an intermediate structure we consider the *- ring R(V) of endomorphisms of V, thereby identifying L(V) with the lattice of right ideals of R(V), with the induced involution. As an application, model completeness of F is shown to imply that of R(V) and L(V).-
dc.languageEnglish-
dc.publisherSPRINGER BASEL AG-
dc.titleDefinable relations in finite-dimensional subspace lattices with involution-
dc.typeArticle-
dc.identifier.wosid000442405700003-
dc.identifier.scopusid2-s2.0-85051858652-
dc.type.rimsART-
dc.citation.volume79-
dc.citation.issue3-
dc.citation.publicationnameALGEBRA UNIVERSALIS-
dc.identifier.doi10.1007/s00012-018-0553-5-
dc.contributor.localauthor마틴 지글러-
dc.contributor.nonIdAuthorHerrmann, Christian-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorReductions in descriptive complexity-
dc.subject.keywordAuthorModel-completeness in quantum logics-
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0