Pulled microcapillary tube resonators with electrical readout for mass sensing applications

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 391
  • Download : 0
This paper reports a microfabrication-free approach to make hollow channel mass sensors by pulling a glass capillary and suspending it on top of a machined jig. A part of the pulled section makes simple contact with an actuation node and a quartz tuning fork (QTF) which acts as a sensing node. The two nodes define a pulled micro capillary tube resonator (P mu TR) simply supported at two contacts. While a piezo actuator beneath the actuation node excites the P mu TR, the QTF senses the resonance frequency of the P mu TR. The proposed concept was validated by electrical and optical measurements of resonant spectra of P mu TR. Then, different liquid samples including water, ethanol, glycerol, and their binary mixtures were introduced into the P mu TR and the resonance frequency of the P mu TR was measured as a function of liquid density. Density responsivity of -3,088 Hz-g(-1) cm(3) obtained is comparable to those of microfabricated hollow resonators. With a micro droplet generation chip configured in series with the P mu TR, size distribution of oil droplets suspended in water was successfully measured with the radius resolution of 31 nm at the average droplet radius, 28.47 mu m. Overall, typical off-the-shelf parts simply constitute a resonant mass sensing system along with a convenient electrical readout.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2016-10
Language
English
Article Type
Article
Citation

SCIENTIFIC REPORTS, v.6

ISSN
2045-2322
DOI
10.1038/srep33799
URI
http://hdl.handle.net/10203/245451
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0