The Feasibility of Healable Electronics and Mechanical Behavior of Silver Nanowire (AgNW)/Healable Polymer Composite

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 362
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBae, Jong-Sooko
dc.contributor.authorLee, Yong Seokko
dc.contributor.authorLi, Junpengko
dc.contributor.authorLiang, Jiajieko
dc.contributor.authorChen, Dustinko
dc.contributor.authorPei, Qibingko
dc.contributor.authorLee, Soon-Bokko
dc.date.accessioned2018-07-24T02:22:02Z-
dc.date.available2018-07-24T02:22:02Z-
dc.date.created2018-07-04-
dc.date.created2018-07-04-
dc.date.issued2018-06-
dc.identifier.citationADVANCED MATERIALS TECHNOLOGIES, v.3, no.6-
dc.identifier.issn2365-709X-
dc.identifier.urihttp://hdl.handle.net/10203/244011-
dc.description.abstractThe future of electronics is expected to include healable and wearable devices and systems. To realize this futuristic perspective, several smart conductive materials possessing the characteristics of being healable, flexible, and/or stretchable, are introduced. Silver nanowire (AgNW) healable polymer composite is one of the more promising candidates for this class of material. This ability of AgNW polymer composite to be healable under practical operating conditions is demonstrated. Specifically cracks induced by both mechanical and electrical loading are demonstrated to be healed by thermal treatment. Furthermore, a fatigue test of the AgNW healable conductor is conducted to investigate its mechanical behavior, an important prerequisite for the deployment of new materials. As a proof of concept, a healable touch panel is fabricated to demonstrate its feasibility, laying a stepping stone for future healable electronics.-
dc.languageEnglish-
dc.publisherWILEY-
dc.subjectFATIGUE BEHAVIOR-
dc.subjectLENGTH-SCALE-
dc.subjectMETAL-FILMS-
dc.subjectTHIN-
dc.subjectPOLYCARBONATE-
dc.subjectSUBSTRATE-
dc.subjectCIRCUITS-
dc.titleThe Feasibility of Healable Electronics and Mechanical Behavior of Silver Nanowire (AgNW)/Healable Polymer Composite-
dc.typeArticle-
dc.identifier.wosid000434947600002-
dc.identifier.scopusid2-s2.0-85046109652-
dc.type.rimsART-
dc.citation.volume3-
dc.citation.issue6-
dc.citation.publicationnameADVANCED MATERIALS TECHNOLOGIES-
dc.identifier.doi10.1002/admt.201700364-
dc.contributor.localauthorLee, Soon-Bok-
dc.contributor.nonIdAuthorBae, Jong-Soo-
dc.contributor.nonIdAuthorLi, Junpeng-
dc.contributor.nonIdAuthorLiang, Jiajie-
dc.contributor.nonIdAuthorChen, Dustin-
dc.contributor.nonIdAuthorPei, Qibing-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorfatigue-
dc.subject.keywordAuthorhealable electronics-
dc.subject.keywordAuthorhealable materials-
dc.subject.keywordAuthormechanical behaviors-
dc.subject.keywordAuthorsilver nanowires-
dc.subject.keywordPlusFATIGUE BEHAVIOR-
dc.subject.keywordPlusLENGTH-SCALE-
dc.subject.keywordPlusMETAL-FILMS-
dc.subject.keywordPlusTHIN-
dc.subject.keywordPlusPOLYCARBONATE-
dc.subject.keywordPlusSUBSTRATE-
dc.subject.keywordPlusCIRCUITS-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0