A 95.2% efficiency dual-path DC-DC step-up converter with continuous output current delivery and low voltage ripple

Cited 24 time in webofscience Cited 0 time in scopus
  • Hit : 292
  • Download : 0
DC-DC boost converters are widely used to increase the supply voltage in various applications, including LED drivers, energy harvesting, etc. [1-5]. The conventional boost converter (CBC) is shown in Fig. 27.5.1, where the switches S1 and S2 are turned on and off alternately at φ1 and φ2, respectively, and the inductor current (IL) is built up and delivered to the output. There are some critical issues in CBC because the output delivery current (IS) is not continuous. As a result, the IL can be much larger than the load current (ILOAD) as φ1 becomes longer. Since a bulky-size inductor having a low parasitic DC resistance (Rdcr) is not usable for mobile applications with a strictly limited space, this large IL results in significant conduction loss in the large RDCR of a small-size inductor. Another issue is that the discontinuous IS in φ2 causes large voltage ripple (AVOUT) at the output. Moreover, switching spike voltages can cause over-voltage stress on the loading block due to large di/dt of IS combined with parasitic inductances of the GND path.
Publisher
IEEE
Issue Date
2018-02-14
Language
English
Citation

65th IEEE International Solid-State Circuits Conference, ISSCC 2018, pp.430

DOI
10.1109/ISSCC.2018.8310368
URI
http://hdl.handle.net/10203/243772
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 24 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0