Development of optoelectrofluidic on-demand printing system for hydrogel sheets광전자유체방식을 이용한 수화젤 시트 프린팅 시스템 개발

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 370
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorPark, Je-Kyun-
dc.contributor.advisor박제균-
dc.contributor.authorGi, Hyun Ji-
dc.date.accessioned2018-06-20T06:17:04Z-
dc.date.available2018-06-20T06:17:04Z-
dc.date.issued2016-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=669200&flag=dissertationen_US
dc.identifier.urihttp://hdl.handle.net/10203/242972-
dc.description학위논문(석사) - 한국과학기술원 : 바이오및뇌공학과, 2016.2,[x, 52 p. :]-
dc.description.abstractThis thesis presents a novel optoelectrofluidic printing system that facilitates not only optoelectrofluidic patterning of microparticles and mammalian cells but also harvesting the patterned microparticles encapsulated within poly(ethylene glycol) dicarylate (PEGDA) hydrogel sheets. Although optoelectrofluidic technology has numerous advantages for programmable and on-demand patterning and feasibility of manipulating single microparticles, practical applications using existing laboratory infrastructure in biological and clinical research fields have been strictly restricted due to the impossibility to recover the final patterned product. In order to address these harvesting limitations, PEGDA was employed to utilize optoelectrofluidic printing system. The concentration of hydrogel precursor and the chamber height were optimized to figure out the suitable harvesting condition of the polymerized PEGDA hydrogel sheet. Also, the Clausius-Mossotti (CM) factor was calculated to investigate the dielectrophoretic mobility of the microparticle and cells. Based on the optimized conditions of the optoelectrofluidic system, three basic abilities of optoelectrofluidic printing system were characterized: Controlling the number of microparticles, controlling distance between microparticle columns, and controlling the ratio of two different microparticles. Furthermore, the optoelectrofluidic patterning and printing of HepG2 cells were demonstrated with minimum resolution of about 10 μm in 5 min. The dielectrophoretic force exerted to cells was verified based on the simulation and the appropriate ranges of frequency was defined experimentally. Finally, optoelectrofluidically cell-patterned hydrogel sheets successfully recovered under a highly viable physiological condition.-
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectDielectrophoresis-
dc.subjectHydrogel sheet-
dc.subjectOn-demand patterning-
dc.subjectOptoelectrofluidics-
dc.subjectPoly(ethylene glycol) Diacrylate-
dc.subject유전영동-
dc.subject수화젤 시트-
dc.subject패터닝-
dc.subject광전자유체역학-
dc.subject폴리에틸렌 글리콜디아실레이트-
dc.titleDevelopment of optoelectrofluidic on-demand printing system for hydrogel sheets-
dc.title.alternative광전자유체방식을 이용한 수화젤 시트 프린팅 시스템 개발-
dc.typeThesis(Master)-
dc.identifier.CNRN325007-
dc.description.department한국과학기술원 :바이오및뇌공학과,-
dc.contributor.alternativeauthor기현지-
Appears in Collection
BiS-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0