5G-Smart Diabetes: Toward Personalized Diabetes Diagnosis with Healthcare Big Data Clouds

Cited 45 time in webofscience Cited 0 time in scopus
  • Hit : 313
  • Download : 0
Recent advances in wireless networking and big data technologies, such as 5G networks, medical big data analytics, and the Internet of Things, along with recent developments in wearable computing and artificial intelligence, are enabling the development and implementation of innovative diabetes monitoring systems and applications. Due to the life-long and systematic harm suffered by diabetes patients, it is critical to design effective methods for the diagnosis and treatment of diabetes. Based on our comprehensive investigation, this article classifies those methods into Diabetes 1.0 and Diabetes 2.0, which exhibit deficiencies in terms of networking and intelligence. Thus, our goal is to design a sustainable, cost-effective, and intelligent diabetes diagnosis solution with personalized treatment. In this article, we first propose the 5G-Smart Diabetes system, which combines the state-of-the-art technologies such as wearable 2.0, machine learning, and big data to generate comprehensive sensing and analysis for patients suffering from diabetes. Then we present the data sharing mechanism and personalized data analysis model for 5G-Smart Diabetes. Finally, we build a 5G-Smart Diabetes testbed that includes smart clothing, smartphone, and big data clouds. The experimental results show that our system can effectively provide personalized diagnosis and treatment suggestions to patients.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2018-04
Language
English
Article Type
Article
Citation

IEEE COMMUNICATIONS MAGAZINE, v.56, no.4, pp.16 - 23

ISSN
0163-6804
DOI
10.1109/MCOM.2018.1700788
URI
http://hdl.handle.net/10203/242259
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 45 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0