Development and applications of super-resolution optical imaging method using near field with correlation analysis근접장과 상관관계 분석을 활용한 초고해상도 광학 이미징 기법 개발 및 응용

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 650
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorKim, Pilhan-
dc.contributor.advisor김필한-
dc.contributor.advisorCho, Yong-Hoon-
dc.contributor.advisor조용훈-
dc.contributor.authorKim, MinKwan-
dc.contributor.author김민관-
dc.date.accessioned2018-05-23T19:32:59Z-
dc.date.available2018-05-23T19:32:59Z-
dc.date.issued2017-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=675666&flag=dissertationen_US
dc.identifier.urihttp://hdl.handle.net/10203/241742-
dc.description학위논문(박사) - 한국과학기술원 : 나노과학기술대학원, 2017.2,[iv, 85 p. :]-
dc.description.abstractIn conventional far-field optical microscopy, it has a limitation on spatial resolution due to diffraction barrier, known as Abbe’s diffraction limit. In detail, when light interacts with an object, interacted light generates near-field and far-field components. The far-field component is propagating light through space and used in conventional optical microscopy. The near-field component is nonpropagating light whose amplitude exponentially decays as it propagates. Because the near-field light includes high-spatial frequency components compared to the far-field light, it is a key parameter to overcome resolution limit in optical microscopy. In this thesis, we developed two different types of super-resolution microscopy. One is a near-field scanning optical microscopy (NSOM). NSOM can provide sub-diffraction resolution by directly detecting the near-field light using a metal coated tip with a small aperture. To obtain a super-resolution image from light-emitting diode (LED), a home-built NSOM system was combined with spectroscopy. By applying correlation analysis, LED samples were quantitatively analyzed in sub-diffraction scale. The other one is super-resolution optical fluctuation imaging (SOFI). SOFI enables to provide super-resolution images by estimating high-spatial frequency components in near-field light using statistical analysis such as correlation from temporal optical fluctuations of fluorophores referred to as blinking. However, because SOFI utilizes intrinsic blinking property of fluorophores, it is only applicable to specific types of fluorophore. To overcome this limitation, we developed a new method by combining SOFI with speckle pattern illumination (S-SOFI). Because S-SOFI uses controllable optical fluctuation induced by illumination, it is applicable for any types of fluorophores. Applying S-SOFI, we theoretically and experimentally demonstrated its ability of super-resolution imaging. Furthermore, S-SOFI was combined with near-field speckle pattern (NS-SOFI) to further improve the resolution of S-SOFI. Using NS-SOFI, we experimentally obtained an image with improved resolution compared to S-SOFI.-
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectNear-field-
dc.subjectCorrelation analysis-
dc.subjectSuper-resolution microscopy-
dc.subjectSpeckle pattern-
dc.subjectOptical fluctuation-
dc.subject근접장-
dc.subject상관관계 분석-
dc.subject고해상도 현미경-
dc.subject반점 조명-
dc.subject광학적 요동-
dc.titleDevelopment and applications of super-resolution optical imaging method using near field with correlation analysis-
dc.title.alternative근접장과 상관관계 분석을 활용한 초고해상도 광학 이미징 기법 개발 및 응용-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN325007-
dc.description.department한국과학기술원 :나노과학기술대학원,-
Appears in Collection
NT-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0