Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration

Cited 36 time in webofscience Cited 0 time in scopus
  • Hit : 501
  • Download : 165
A particle suspended in a fluid within a microfluidic channel experiences a direct acoustic radiation force (ARF) when traveling surface acoustic waves (TSAWs) couple with the fluid at the Rayleigh angle, thus producing two components of the ARF. Most SAW-based microfluidic devices rely on the horizontal component of the ARF to migrate prefocused particles laterally across a microchannel width. Although the magnitude of the vertical component of the ARF is more than twice the magnitude of the horizontal component, it is long ignored due to polydimethylsiloxane (PDMS) microchannel fabrication limitations and difficulties in particle focusing along the vertical direction. In the present work, a single-layered PDMS microfluidic chip is devised for hydrodynamically focusing particles in the vertical plane while explicitly taking advantage of the horizontal ARF component to slow down the selected particles and the stronger vertical ARF component to push the particles in the upward direction to realize continuous particle separation. The proposed particle separation device offers high-throughput operation with purity >97% and recovery rate >99%. It is simple in its fabrication and versatile due to the single-layered microchannel design, combined with vertical hydrodynamic focusing and the use of both the horizontal and vertical components of the ARF.
Publisher
WILEY
Issue Date
2018-02
Language
English
Article Type
Article
Keywords

SURFACE ACOUSTIC-WAVES; MICROFLUIDIC CHANNEL; CELL-SEPARATION; SIZE; MANIPULATION; DROPLET; SYSTEM; MICROPARTICLES; MICROSPHERES; PLATFORM

Citation

ADVANCED SCIENCE, v.5, no.2

ISSN
2198-3844
DOI
10.1002/advs.201700285
URI
http://hdl.handle.net/10203/240977
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
000426200000024.pdf(2.27 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 36 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0