Enhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering

Cited 46 time in webofscience Cited 0 time in scopus
  • Hit : 390
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHan, Hyeonko
dc.contributor.authorKim, Donghoonko
dc.contributor.authorChu, Kanghyunko
dc.contributor.authorPark, Jucheolko
dc.contributor.authorNam, Sang Yeolko
dc.contributor.authorHeo, Seungyangko
dc.contributor.authorYang, Chan-Hoko
dc.contributor.authorJang, Hyun Myungko
dc.date.accessioned2018-02-21T06:04:16Z-
dc.date.available2018-02-21T06:04:16Z-
dc.date.created2018-02-12-
dc.date.created2018-02-12-
dc.date.created2018-02-12-
dc.date.issued2018-01-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.10, no.2, pp.1846 - 1853-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/240227-
dc.description.abstractFerroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of similar to 10(4)V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E-g). Here, we present a promising FPV based on hexagonal YbFeO3 (h-YbFO) thin-film heterostructure by exploiting its narrow E-g. More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows similar to 3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al2O3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E-g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleEnhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering-
dc.typeArticle-
dc.identifier.wosid000423140400043-
dc.identifier.scopusid2-s2.0-85040654097-
dc.type.rimsART-
dc.citation.volume10-
dc.citation.issue2-
dc.citation.beginningpage1846-
dc.citation.endingpage1853-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.7b16700-
dc.contributor.localauthorYang, Chan-Ho-
dc.contributor.nonIdAuthorHan, Hyeon-
dc.contributor.nonIdAuthorKim, Donghoon-
dc.contributor.nonIdAuthorChu, Kanghyun-
dc.contributor.nonIdAuthorPark, Jucheol-
dc.contributor.nonIdAuthorNam, Sang Yeol-
dc.contributor.nonIdAuthorHeo, Seungyang-
dc.contributor.nonIdAuthorJang, Hyun Myung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorswitchable photovoltaic effect-
dc.subject.keywordAuthorferroelectric photovoltaic effect-
dc.subject.keywordAuthorband gap-
dc.subject.keywordAuthorhexagonal ferrites-
dc.subject.keywordAuthorthin film-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusOXYGEN VACANCIES-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusBIFEO3-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusMULTIFERROISM-
dc.subject.keywordPlusOXIDES-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0