Self-organized multi-layered graphene-boron-doped diamond hybrid nanowalls for high-performance electron emission devices

Cited 55 time in webofscience Cited 0 time in scopus
  • Hit : 269
  • Download : 0
Carbon nanomaterials such as nanotubes, nanoflakes/nanowalls, and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. However, these materials show poor stability and short lifetimes, which prevent their use in practical device applications. The aim of this study was to find an innovative nanomaterial possessing both high robustness and reliable FEE behavior. Herein, a hybrid structure of self-organized multi-layered graphene (MLG)-boron doped diamond (BDD) nanowall materials with superior FEE characteristics was successfully synthesized using a microwave plasma enhanced chemical vapor deposition process. Transmission electron microscopy reveals that the as-prepared carbon clusters have a uniform, dense, and sharp nanowall morphology with sp(3) diamond cores encased by an sp(2) MLG shell. Detailed nanoscale investigations conducted using peak force-controlled tunneling atomic force microscopy show that each of the core-shell structured carbon cluster fields emits electrons equally well. The MLG-BDD nanowall materials show a low turn-on field of 2.4 V mu m(-1), a high emission current density of 4.2 mA cm(-2) at an applied field of 4.0 V mu m(-1), a large field enhancement factor of 4500, and prominently high lifetime stability (lasting for 700 min), which demonstrate the superiority of these materials over other hybrid nanostructured materials. The potential of these MLG-BDD hybrid nanowall materials in practical device applications was further illustrated by the plasma illumination behavior of a microplasma device with these materials as the cathode, where a low threshold voltage of 330 V (low threshold field of 330 V mm(-1)) and long plasma stability of 358 min were demonstrated. The fabrication of these hybrid nanowalls is straight forward and thereby opens up a pathway for the advancement of next-generation cathode materials for high brightness electron emission and micro-plasma-based display devices.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2018-01
Language
English
Article Type
Article
Keywords

ENHANCED FIELD-EMISSION; NANOCRYSTALLINE DIAMOND; CARBON NANOTUBES; DECORATED GRAPHENE; AMORPHOUS-CARBON; NANOWIRE ARRAYS; CVD DIAMOND; THIN-FILMS; GROWTH; EMITTERS

Citation

NANOSCALE, v.10, no.3, pp.1345 - 1355

ISSN
2040-3364
DOI
10.1039/c7nr06774g
URI
http://hdl.handle.net/10203/240222
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 55 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0