Efficient prediction of reaction paths through molecular graph and reaction network analysis

Cited 70 time in webofscience Cited 0 time in scopus
  • Hit : 477
  • Download : 330
DC FieldValueLanguage
dc.contributor.authorKim, Yeonjoonko
dc.contributor.authorKim, Jin Wooko
dc.contributor.authorKim, Zeehyoko
dc.contributor.authorKim, Woo Younko
dc.date.accessioned2018-02-21T06:03:37Z-
dc.date.available2018-02-21T06:03:37Z-
dc.date.created2018-02-12-
dc.date.created2018-02-12-
dc.date.created2018-02-12-
dc.date.created2018-02-12-
dc.date.issued2018-01-
dc.identifier.citationCHEMICAL SCIENCE, v.9, no.4, pp.825 - 835-
dc.identifier.issn2041-6520-
dc.identifier.urihttp://hdl.handle.net/10203/240217-
dc.description.abstractDespite remarkable advances in computational chemistry, prediction of reaction mechanisms is still challenging, because investigating all possible reaction pathways is computationally prohibitive due to the high complexity of chemical space. A feasible strategy for efficient prediction is to utilize chemical heuristics. Here, we propose a novel approach to rapidly search reaction paths in a fully automated fashion by combining chemical theory and heuristics. A key idea of our method is to extract a minimal reaction network composed of only favorable reaction pathways from the complex chemical space through molecular graph and reaction network analysis. This can be done very efficiently by exploring the routes connecting reactants and products with minimum dissociation and formation of bonds. Finally, the resulting minimal network is subjected to quantum chemical calculations to determine kinetically the most favorable reaction path at the predictable accuracy. As example studies, our method was able to successfully find the accepted mechanisms of Claisen ester condensation and cobalt-catalyzed hydroformylation reactions.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectPOTENTIAL-ENERGY SURFACE-
dc.subjectCHEMICAL-REACTION NETWORKS-
dc.subjectREACTION-MECHANISMS-
dc.subjectORGANIC-SYNTHESIS-
dc.subjectEQUILIBRIUM GEOMETRIES-
dc.subjectTRANSITION STRUCTURES-
dc.subjectDENSITY FUNCTIONALS-
dc.subjectAUTOMATED DISCOVERY-
dc.subjectREACTION DESIGN-
dc.subjectREACTION STEPS-
dc.titleEfficient prediction of reaction paths through molecular graph and reaction network analysis-
dc.typeArticle-
dc.identifier.wosid000423401400004-
dc.identifier.scopusid2-s2.0-85041233795-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue4-
dc.citation.beginningpage825-
dc.citation.endingpage835-
dc.citation.publicationnameCHEMICAL SCIENCE-
dc.identifier.doi10.1039/c7sc03628k-
dc.contributor.localauthorKim, Woo Youn-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusPOTENTIAL-ENERGY SURFACE-
dc.subject.keywordPlusCHEMICAL-REACTION NETWORKS-
dc.subject.keywordPlusREACTION-MECHANISMS-
dc.subject.keywordPlusORGANIC-SYNTHESIS-
dc.subject.keywordPlusEQUILIBRIUM GEOMETRIES-
dc.subject.keywordPlusTRANSITION STRUCTURES-
dc.subject.keywordPlusDENSITY FUNCTIONALS-
dc.subject.keywordPlusAUTOMATED DISCOVERY-
dc.subject.keywordPlusREACTION DESIGN-
dc.subject.keywordPlusREACTION STEPS-
dc.subject.keywordPlusPOTENTIAL-ENERGY SURFACE-
dc.subject.keywordPlusCHEMICAL-REACTION NETWORKS-
dc.subject.keywordPlusREACTION-MECHANISMS-
dc.subject.keywordPlusORGANIC-SYNTHESIS-
dc.subject.keywordPlusEQUILIBRIUM GEOMETRIES-
dc.subject.keywordPlusTRANSITION STRUCTURES-
dc.subject.keywordPlusDENSITY FUNCTIONALS-
dc.subject.keywordPlusAUTOMATED DISCOVERY-
dc.subject.keywordPlusREACTION DESIGN-
dc.subject.keywordPlusREACTION STEPS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 70 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0