Dispenser printing of piezo-resistive nanocomposite on woven elastic fabric and hysteresis compensation for skin-mountable stretch sensing

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 515
  • Download : 0
Recently, piezo-resistive nanocomposites have emerged as an important smart material for realizing less obtrusive and more comfortable stretch sensing applications. To manufacture cost-effective and skin-mountable stretch sensor, dispenser printing is advantageous method because piezo-resistive nanocomposites can be directly printed on a woven elastic fabric in various patterns. However, both electrical and mechanical properties of the nanocomposites need to be modulated to achieve favorable sensing performance as well as strong adhesion between the nanocomposite and the fabric to sustain large strains. Moreover, inherent hysteretic behavior of the soft nanocomposite should be compensated to obtain consistent stretch sensing. This paper presents silicone rubber mixed with long multi-walled carbon nanotubes (Long-MWCNTs) composites as a piezo-resistive transducing material for dispenser printing. High aspect ratio of the Long-MWCNTs resulted in low viscosity of a liquid state nanocomposite and high electrical conductivity. Due to the low viscosity, the liquid state nanocomposite could permeate into gaps of the woven elastic fabrics and ensured strong bonding force in large strains up to 35%. In addition, a modified Prandtl-Ishilinskii (MPI) model was adopted to compensate for piezo-resistive hysteresis of the nanocomposite. For validation, the skin-mountable sensor was applied to estimate rotation angle of a wrist. The sensor system estimated the rotation angle of the wrist with an estimation error of 1.93 degrees within 65 degrees range (2.9%) for the step increment and decrement test, and 7.15 degrees within 75 degrees range (9.5%) for the arbitrary movement test. Thus, the experimental results show that the dispenser printing method incorporated with hysteresis compensation can provide a guideline to implement skin-mountable smart fabrics for stretch sensing using various nanocomposites
Publisher
IOP PUBLISHING LTD
Issue Date
2018-02
Language
English
Article Type
Article
Keywords

HUMAN-MOTION DETECTION; STRAIN SENSOR; RECENT PROGRESS; COMPOSITES; GAIT

Citation

SMART MATERIALS AND STRUCTURES, v.27, no.2

ISSN
0964-1726
DOI
10.1088/1361-665X/aaa5e3
URI
http://hdl.handle.net/10203/240197
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0