An autonomous flexible propulsor in a quiescent flow

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 304
  • Download : 0
Flapping motions of wings and fins are common in nature. Living organisms use such motions to float in a fluid or to propel themselves forward. Some entities, such as tadpoles, use distinct flexible components to generate propulsion. Here we introduce a propulsor consisting of a rigid circular head containing an energy source and a flexible fin for propulsion. The head imparts a sinusoidal torque to the leading edge of the fin and the flexible fin flaps along the leading edge. The flexible propulsor thus moves via an oscillating relative angle between the head and the leading edge of the fin. Unlike a self-propelled heaving and pitching fin, our ‘autonomous’ flexible propulsor has no prescribed motion or constraint referenced from outside coordinates. The immersed boundary method was used to model the interaction between the flexible propulsor and the surrounding fluid. A penalty method, in which the head and fin imparted a periodic torque to each other, was used to connect the head and the fin. The cruising speed and propulsive efficiency of the propulsor were explored as a function of the ratio of the head size to the fin length (D/L), the pitching amplitude (θp) and the pitching frequency (f). The cruising speed and the equilibrium position (geq) of the flexible propulsor near the ground were also examined. The optimal propulsive efficiency was achieved at the head ratio of D/L = 0.2 at θp = 30° and f = 0.2. The cruising speed of the flexible propulsor increased when operating near the ground. The gap distance between the propulsor and the ground was dynamically determined by the pitching motion.
Publisher
ELSEVIER SCIENCE INC
Issue Date
2017-12
Language
English
Article Type
Article
Keywords

IMMERSED BOUNDARY METHOD; PADDLING-BASED LOCOMOTION; UNIFORM-FLOW; FLIGHT; MODEL; AERODYNAMICS; FLEXIBILITY; SIMULATION; FIELD; FOIL

Citation

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, v.68, pp.151 - 157

ISSN
0142-727X
DOI
10.1016/j.ijheatfluidflow.2017.10.006
URI
http://hdl.handle.net/10203/239485
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0