Design sensitivity method for sampling-based RBDO with fixed COV

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 209
  • Download : 0
Conventional reliability-based design optimization (RBDO) uses the means of input random variables as its design variables; and the standard deviations (STDEVs) of the random variables are fixed constants. However, the fixed STDEVs may not correctly represent certain RBDO problems well, especially when a specified tolerance of the input random variable is presented as a percentage of the mean value. For this kind of design problem, the coefficients of variations (COVs) of the input random variables should be fixed, which means STDEVs are not fixed. In this paper, a method to calculate the design sensitivity of probability of failure for RBDO with fixed COV is developed. For sampling-based RBDO, which uses Monte Carlo simulation for reliability analysis, the design sensitivity of the probability of failure is derived using a first-order score function. The score function contains the effect of the change in the STDEV in addition to the change in the mean. As copulas are used for the design sensitivity, correlated input random variables also can be used for RBDO with fixed COV. Moreover, the design sensitivity can be calculated efficiently during the evaluation of the probability of failure. Using a mathematical example, the accuracy and efficiency of the developed method are verified. The RBDO result for mathematical and physical problems indicates that the developed method provides accurate design sensitivity in the optimization process.
Publisher
American Society of Mechanical Engineers (ASME)
Issue Date
2015-08-02
Language
English
Citation

ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015

DOI
10.1115/DETC201547359
URI
http://hdl.handle.net/10203/238712
Appears in Collection
ME-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0