Laminations on the circle and convergence groups

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 312
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBaik, Hyungryulko
dc.date.accessioned2018-01-30T03:55:39Z-
dc.date.available2018-01-30T03:55:39Z-
dc.date.created2017-12-22-
dc.date.issued2016-04-08-
dc.identifier.citationTopological and Homological Methods in Group Theory-
dc.identifier.urihttp://hdl.handle.net/10203/238696-
dc.description.abstractA discrete group of circle homeomorphisms is a Fuchsian group if and only if it is a convergence group (this is due to Tukia, Casson-Jungreis, Gabai, ...). We show that the convergence property can also be characterized in terms of invariant laminations on the circle, so this gives a new characterization of Fuchsian groups. We also discuss what can be said about fibered hyperbolic 3-manifold groups. The main motivation of the work is Thurston´s universal circle theory.-
dc.languageEnglish-
dc.publisherBielefeld University-
dc.titleLaminations on the circle and convergence groups-
dc.typeConference-
dc.type.rimsCONF-
dc.citation.publicationnameTopological and Homological Methods in Group Theory-
dc.identifier.conferencecountryGE-
dc.identifier.conferencelocationBielefeld University-
dc.contributor.localauthorBaik, Hyungryul-
Appears in Collection
MA-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0