Oxygen Partial Pressure during Pulsed Laser Deposition: Deterministic Role on Thermodynamic Stability of Atomic Termination Sequence at SrRuO3/BaTiO3 Interface

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 493
  • Download : 0
With recent trends on miniaturizing oxide-baed devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/ interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical-SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the Po-2 to 5 mTorr, regardless of the total background gas pressure (P-total), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.
Publisher
AMER CHEMICAL SOC
Issue Date
2017-08
Language
English
Article Type
Article
Keywords

FERROELECTRIC TUNNEL-JUNCTIONS; THIN-FILMS; OXIDE INTERFACES; GROWTH; POLARIZATION; SRTIO3; ELECTRORESISTANCE; STOICHIOMETRY; BARRIER; GAS

Citation

ACS APPLIED MATERIALS INTERFACES, v.9, no.32, pp.27305 - 27312

ISSN
1944-8244
DOI
10.1021/acsami.7b07813
URI
http://hdl.handle.net/10203/228641
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0