Translational motion correction algorithm for truncated cone-beam CT using opposite projections

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 748
  • Download : 0
BACKGROUND: Cone-beam computed tomography (CBCT) is widely used in various medical imaging applications, including dental examinations. Dental CBCT images often suffer from motion artifacts caused by involuntary rigid motion of patients. However, earlier motion compensation studies are not applicable for dental CBCT systems using truncated detectors. OBJECTIVE: This study proposes a novel motion correction algorithm that can be applied for truncated dental CBCT images. METHODS: We propose a two-step method for motion correction. First, we estimate the relative displacement of each pair of opposite projections by finding the motion vector that maximizes the two-dimensional correlation coefficients of the opposite projections. Second, we convert the relative displacement into the absolute coordinate motion that yields the highest image sharpness of the reconstruction image. Using the motion vectors in the absolute coordinate system, motion artifacts are then compensated by modifying the trajectory of the source and detector during the back-projection step of the image reconstruction process. RESULTS: In simulation, the proposed method successfully estimated the true relative displacement. After converting to the absolute coordinate motions, the motion-compensated image was close to the ground-truth image and exhibited a lower mean-square-error than that of the uncompensated image. The results from the real data experiment also confirmed that the proposed method successfully compensated for the motion artifacts. CONCLUSIONS: The experimental results confirmed that the proposed method was applicable to most dental CBCT systems using a truncated detector without any use of an additional motion tracking system nor prior knowledge.
Publisher
IOS PRESS
Issue Date
2017-11
Language
English
Article Type
Article
Keywords

COMPUTED-TOMOGRAPHY; ARTIFACTS; OBJECTS; VIEW

Citation

JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, v.25, no.6, pp.927 - 944

ISSN
0895-3996
DOI
10.3233/XST-16231
URI
http://hdl.handle.net/10203/228605
Appears in Collection
AI-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0