Therapeutic Effects of Targeted PPAR. Activation on Inflamed High-Risk Plaques Assessed by Serial Optical Imaging In Vivo

Cited 23 time in webofscience Cited 0 time in scopus
  • Hit : 1319
  • Download : 270
Rationale: Atherosclerotic plaque is a chronic inflammatory disorder involving lipid accumulation within arterial walls. In particular, macrophages mediate plaque progression and rupture. While PPAR. agonist is known to have favorable pleiotropic effects on atherogenesis, its clinical application has been very limited due to undesirable systemic effects. We hypothesized that the specific delivery of a PPAR. agonist to inflamed plaques could reduce plaque burden and inflammation without systemic adverse effects. Methods: Herein, we newly developed a macrophage mannose receptor (MMR)-targeted biocompatible nanocarrier loaded with lobeglitazone (MMR-Lobe), which is able to specifically activate PPAR. pathways within inflamed high-risk plaques, and investigated its anti-atherogenic and anti-inflammatory effects both in in vitro and in vivo experiments. Results: MMR-Lobe had a high affinity to macrophage foam cells, and it could efficiently promote cholesterol efflux via LXR alpha, ABCA1, and ABCG1 dependent pathways, and inhibit plaque protease expression. Using in vivo serial optical imaging of carotid artery, MMR-Lobe markedly reduced both plaque burden and inflammation in atherogenic mice without undesirable systemic effects. Comprehensive analysis of en face aorta by ex vivo imaging and immunostaining well corroborated the in vivo findings. Conclusion: MMR-Lobe was able to activate PPAR. pathways within high-risk plaques and effectively reduce both plaque burden and inflammation. This novel targetable PPAR. activation in macrophages could be a promising therapeutic strategy for high-risk plaques.
Publisher
IVYSPRING INT PUBL
Issue Date
2018-01
Language
English
Article Type
Article
Citation

THERANOSTICS, v.8, no.1, pp.45 - 60

ISSN
1838-7640
DOI
10.7150/thno.20885
URI
http://hdl.handle.net/10203/227035
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
000414141400004.pdf(3.6 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 23 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0