Mechanical analysis of surface-coated zircaloy cladding

Cited 35 time in webofscience Cited 0 time in scopus
  • Hit : 794
  • Download : 1039
DC FieldValueLanguage
dc.contributor.authorLee, Youhoko
dc.contributor.authorLee, Jeong-Ikko
dc.contributor.authorNo, Hee Cheonko
dc.date.accessioned2017-10-23T02:00:52Z-
dc.date.available2017-10-23T02:00:52Z-
dc.date.created2017-10-10-
dc.date.created2017-10-10-
dc.date.issued2017-08-
dc.identifier.citationNUCLEAR ENGINEERING AND TECHNOLOGY, v.49, no.5, pp.1031 - 1043-
dc.identifier.issn1738-5733-
dc.identifier.urihttp://hdl.handle.net/10203/226461-
dc.description.abstractA structural model for stress distributions of coated Zircaloy subjected to realistic incore pressure difference, thermal expansion, irradiation-induced axial growth, and creep has been developed in this study. In normal operation, the structural integrity of coating layers is anticipated to be significantly challenged with increasing burnup. Strain mismatch between the zircaloy and the coated layer, due to their different irradiation-induced axial growth, and creep deformation are found to be the most dominant causes of stress. This study suggests that the compatibility of the high temperature irradiationinduced strains (axial growth and creep) between zircaloy and the coating layer and the capability to undergo plastic strain should be taken as key metrics, along with the traditional focus on chemical protectiveness. (C) 2017 Korean Nuclear Society, Published by Elsevier Korea LLC.-
dc.languageEnglish-
dc.publisherKOREAN NUCLEAR SOC-
dc.subjectHIGH-TEMPERATURE OXIDATION-
dc.subjectTIN-BASED COATINGS-
dc.subjectSILICON-CARBIDE-
dc.subjectCORROSION-RESISTANCE-
dc.subjectCANDIDATE MATERIALS-
dc.subjectSIC/SIC COMPOSITES-
dc.subjectFUEL-
dc.subjectENVIRONMENTS-
dc.subjectIRRADIATION-
dc.subjectALLOYS-
dc.titleMechanical analysis of surface-coated zircaloy cladding-
dc.typeArticle-
dc.identifier.wosid000410895900016-
dc.identifier.scopusid2-s2.0-85022022950-
dc.type.rimsART-
dc.citation.volume49-
dc.citation.issue5-
dc.citation.beginningpage1031-
dc.citation.endingpage1043-
dc.citation.publicationnameNUCLEAR ENGINEERING AND TECHNOLOGY-
dc.identifier.doi10.1016/j.net.2017.03.012-
dc.contributor.localauthorLee, Jeong-Ik-
dc.contributor.localauthorNo, Hee Cheon-
dc.contributor.nonIdAuthorLee, Youho-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAccident Tolerant Fuel-
dc.subject.keywordAuthorCladding-
dc.subject.keywordAuthorStress-
dc.subject.keywordAuthorCoating-
dc.subject.keywordPlusHIGH-TEMPERATURE OXIDATION-
dc.subject.keywordPlusTIN-BASED COATINGS-
dc.subject.keywordPlusSILICON-CARBIDE-
dc.subject.keywordPlusCORROSION-RESISTANCE-
dc.subject.keywordPlusCANDIDATE MATERIALS-
dc.subject.keywordPlusSIC/SIC COMPOSITES-
dc.subject.keywordPlusFUEL-
dc.subject.keywordPlusENVIRONMENTS-
dc.subject.keywordPlusIRRADIATION-
dc.subject.keywordPlusALLOYS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 35 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0