High performance electrochemical glucose sensor based on three-dimensional MoS2/graphene aerogel

Cited 71 time in webofscience Cited 0 time in scopus
  • Hit : 867
  • Download : 0
Two-dimensional (2D) nanosheets have been extensively explored as electrode materials for the development of high-performance electrochemical biosensors due to their unique structural characteristics. Nevertheless, 2D nanosheets suffer from sheet aggregation issues limiting the electrical conductivity of layered metal sulfides or hydroxides. Here, we report high-performance glucose biosensors based on a three-dimensional (3D) aerogel composed of interconnected 2D MoS2 and graphene sheet. 3D MoS2/graphene aerogel (MGA) provides a large surface area for the effective immobilization of enzymes, and continuous framework of electrically conductive graphene sheets. Flow-injection amperometric evaluation of the glucose biosensor using a 3D MGA electrode exhibits a rapid response (similar to 4s), a linear detection range from 2 to 20 mM, a sensitivity of 3.36 mu A/mM, and a low limit of detection of 0.29 mM. Moreover, the interference response from oxidizable species, such as ascorbic acid, uric acid and dopamine is negligible at an operating potential of -0.45 V. (C) 2017 Elsevier Inc. All rights reserved.
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Issue Date
2017-11
Language
English
Article Type
Article
Citation

JOURNAL OF COLLOID AND INTERFACE SCIENCE, v.506, pp.379 - 385

ISSN
0021-9797
DOI
10.1016/j.jcis.2017.07.061
URI
http://hdl.handle.net/10203/226386
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 71 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0