Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin

Cited 84 time in webofscience Cited 0 time in scopus
  • Hit : 1035
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKong, Minsukko
dc.contributor.authorShin, Joong Hoko
dc.contributor.authorHeu, Sunggiko
dc.contributor.authorPark, Je-Kyunko
dc.contributor.authorRyu, Sangryeolko
dc.date.accessioned2017-07-18T05:42:09Z-
dc.date.available2017-07-18T05:42:09Z-
dc.date.created2017-07-01-
dc.date.created2017-07-01-
dc.date.created2017-07-01-
dc.date.issued2017-10-
dc.identifier.citationBIOSENSORS & BIOELECTRONICS, v.96, pp.173 - 177-
dc.identifier.issn0956-5663-
dc.identifier.urihttp://hdl.handle.net/10203/224769-
dc.description.abstractThe development of a cost-effective and efficient bacterial detection assay is essential for diagnostic fields, particularly in resource-poor settings. Although antibodies have been widely used for bacterial capture, the production of soluble antibodies is still expensive and time-consuming. Here, we developed a nitrocellulose-based lateral flow assay using cell wall binding domains (CBDs) from phage as a recognition element and colloidal gold nanoparticles as a colorimetric signal for the detection of a model pathogenic bacterium, Bacillus cereus (B. cereus). To improve conjugation efficiency and detection sensitivity, cysteine-glutathione-S-transferase-tagged CBDs and maltose-binding protein-tagged CBDs were produced in Escherichia coli (E. coli) and incorporated in our assays. The sensitivity of the strip to detect B. cereus was 1x10(4) CFU/mL and the overall assay time was 20 min. The assay showed superior results compared to the antibody-based approach, and did not show any significant cross-reactivity. This proof of concept study indicates that the lateral flow assay using engineered CBDs hold considerable promise as simple, rapid, and cost-effective biosensors for whole cell detection.-
dc.languageEnglish-
dc.publisherELSEVIER ADVANCED TECHNOLOGY-
dc.titleLateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin-
dc.typeArticle-
dc.identifier.wosid000403419700024-
dc.identifier.scopusid2-s2.0-85018381939-
dc.type.rimsART-
dc.citation.volume96-
dc.citation.beginningpage173-
dc.citation.endingpage177-
dc.citation.publicationnameBIOSENSORS & BIOELECTRONICS-
dc.identifier.doi10.1016/j.bios.2017.05.010-
dc.contributor.localauthorPark, Je-Kyun-
dc.contributor.nonIdAuthorKong, Minsuk-
dc.contributor.nonIdAuthorHeu, Sunggi-
dc.contributor.nonIdAuthorRyu, Sangryeol-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorBacillus cereus-
dc.subject.keywordAuthorBacteriophage-
dc.subject.keywordAuthorBiosensor-
dc.subject.keywordAuthorCell wall binding domain-
dc.subject.keywordAuthorPaper strip-
dc.subject.keywordPlusBACILLUS-CEREUS-
dc.subject.keywordPlusLISTERIA-MONOCYTOGENES-
dc.subject.keywordPlusRAPID DETECTION-
dc.subject.keywordPlusANTIBODIES-
dc.subject.keywordPlusEXPRESSION-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 84 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0