Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655

Cited 31 time in webofscience Cited 0 time in scopus
  • Hit : 1176
  • Download : 253
DC FieldValueLanguage
dc.contributor.authorSeo, Sang Wooko
dc.contributor.authorGao, Yeko
dc.contributor.authorKim, Donghyukko
dc.contributor.authorSzubin, Richardko
dc.contributor.authorYang, Jinako
dc.contributor.authorCho, Byung-Kwanko
dc.contributor.authorPalsson, Bernhard O.ko
dc.date.accessioned2017-06-16T04:01:12Z-
dc.date.available2017-06-16T04:01:12Z-
dc.date.created2017-06-05-
dc.date.created2017-06-05-
dc.date.created2017-06-05-
dc.date.issued2017-05-
dc.identifier.citationSCIENTIFIC REPORTS, v.7-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/10203/224076-
dc.description.abstractA transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the osmotic stress response in bacteria. Here, we reveal a genome-scale OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level in an OmpR knock-out strain. Specifically, we find that: 1) OmpR regulates mostly membrane-located gene products involved in diverse fundamental biological processes, such as narU (encoding nitrate/nitrite transporter), ompX (encoding outer membrane protein X), and nuoN (encoding NADH: ubiquinone oxidoreductase); 2) by investigating co-regulation of entire sets of genes regulated by other stressresponse TFs, stresses are surprisingly independently regulated among each other; and, 3) a detailed investigation of the physiological roles of the newly discovered OmpR regulon genes reveals that activation of narU represents a novel strategy to significantly improve osmotic stress tolerance of E. coli. Thus, the genome-scale approach to elucidating regulons comprehensively identifies regulated genes and leads to fundamental discoveries related to stress responses.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectCHIP-SEQ DATA-
dc.subjectNEGATIVE REGULATION-
dc.subjectOXIDATIVE STRESS-
dc.subjectGENE-
dc.subjectPROTEIN-
dc.subjectOSMOLARITY-
dc.subjectEXPRESSION-
dc.subjectNETWORK-
dc.subjectSYSTEM-
dc.subjectRNA-
dc.titleRevealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655-
dc.typeArticle-
dc.identifier.wosid000401614900039-
dc.identifier.scopusid2-s2.0-85019926080-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.publicationnameSCIENTIFIC REPORTS-
dc.identifier.doi10.1038/s41598-017-02110-7-
dc.contributor.localauthorCho, Byung-Kwan-
dc.contributor.nonIdAuthorSeo, Sang Woo-
dc.contributor.nonIdAuthorGao, Ye-
dc.contributor.nonIdAuthorKim, Donghyuk-
dc.contributor.nonIdAuthorSzubin, Richard-
dc.contributor.nonIdAuthorYang, Jina-
dc.contributor.nonIdAuthorPalsson, Bernhard O.-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCHIP-SEQ DATA-
dc.subject.keywordPlusNEGATIVE REGULATION-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusGENE-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusOSMOLARITY-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusRNA-
dc.subject.keywordPlusCHIP-SEQ DATA-
dc.subject.keywordPlusNEGATIVE REGULATION-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusGENE-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusOSMOLARITY-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusRNA-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 31 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0