Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli

Cited 31 time in webofscience Cited 0 time in scopus
  • Hit : 242
  • Download : 525
Terephthalic acid (TPA) is an important industrial chemical currently produced by energy intensive and potentially hazardous p-xylene (pX) oxidation process. Here we report the development of metabolically engineered Escherichia coli system for biological transformation of pX into TPA. The engineered E. coli strain harbours a synthetic TPA pathway optimized through manipulation of expression levels of upstream and downstream modules. The upstream pathway converts pX to p-toluic acid (pTA) and the downstream pathway transforms pTA to TPA. In a two-phase partitioning fermentation, the engineered strain converts 8.8 g pX into 13.3 g TPA, which corresponds to a conversion yield of 96.7 mol%. These results suggest that the E. coli system presented here might be a promising alternative for the large-scale biotechnological production of TPA and lays the foundations for the future development of sustainable approaches for TPA production.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2017-05
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.8

ISSN
2041-1723
DOI
10.1038/ncomms15689
URI
http://hdl.handle.net/10203/224058
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 31 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0