Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance

Cited 106 time in webofscience Cited 0 time in scopus
  • Hit : 1188
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKang, Yoo Kyungko
dc.contributor.authorKwon, Kyuko
dc.contributor.authorRyu, Jea Sungko
dc.contributor.authorLee, Ha Neulko
dc.contributor.authorPark, Chan-Kyuko
dc.contributor.authorChung, Hyun Jungko
dc.date.accessioned2017-06-05T02:06:08Z-
dc.date.available2017-06-05T02:06:08Z-
dc.date.created2017-03-08-
dc.date.created2017-03-08-
dc.date.issued2017-04-
dc.identifier.citationBIOCONJUGATE CHEMISTRY, v.28, no.4, pp.957 - 967-
dc.identifier.issn1043-1802-
dc.identifier.urihttp://hdl.handle.net/10203/223860-
dc.description.abstractThe overuse of antibiotics plays a major role in the emergence and spread of multidrug-resistant bacteria. A molecularly targeted, specific treatment method for bacterial pathogens can prevent this problem by reducing the selective pressure during microbial growth. Herein, we introduce a nonviral treatment strategy delivering genome editing material for targeting antibacterial resistance. We apply the CRISPR-Cas9 system, which has been recognized as an innovative tool for highly specific and efficient genome engineering in different organisms, as the delivery cargo. We utilize polymer-derivatized Cas9, by direct covalent modification of the protein with cationic polymer, for subsequent complexation with single-guide RNA targeting antibiotic resistance. We show that nanosized CRISPR complexes (= Cr-Nanocomplex) were successfully formed, while maintaining the functional activity of Cas9 endonuclease to induce double-strand DNA cleavage. We also demonstrate that the Cr-Nanocomplex designed to target mecA-the major gene involved in methicillin resistance-can be efficiently delivered into Methicillin-resistant Staphylococcus aureus (MRSA), and allow the editing of the bacterial genome with much higher efficiency compared to using native Cas9 complexes or conventional lipid-based formulations. The present study shows for the first time that a covalently modified CRISPR system allows nonviral, therapeutic genome editing, and can be potentially applied as a target specific antimicrobial.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectVIVO GENE DELIVERY-
dc.subjectIN-VIVO-
dc.subjectSTAPHYLOCOCCUS-AUREUS-
dc.subjectVANCOMYCIN-RESISTANT-
dc.subjectEFFICIENT DELIVERY-
dc.subjectVIRAL VECTORS-
dc.subjectTHERAPY-
dc.subjectPOLYETHYLENIMINE-
dc.subjectNANOPARTICLES-
dc.subjectRNA-
dc.titleNonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance-
dc.typeArticle-
dc.identifier.wosid000399965800014-
dc.identifier.scopusid2-s2.0-85018506781-
dc.type.rimsART-
dc.citation.volume28-
dc.citation.issue4-
dc.citation.beginningpage957-
dc.citation.endingpage967-
dc.citation.publicationnameBIOCONJUGATE CHEMISTRY-
dc.identifier.doi10.1021/acs.bioconjchem.6b00676-
dc.contributor.localauthorPark, Chan-Kyu-
dc.contributor.localauthorChung, Hyun Jung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusVIVO GENE DELIVERY-
dc.subject.keywordPlusIN-VIVO-
dc.subject.keywordPlusSTAPHYLOCOCCUS-AUREUS-
dc.subject.keywordPlusVANCOMYCIN-RESISTANT-
dc.subject.keywordPlusEFFICIENT DELIVERY-
dc.subject.keywordPlusVIRAL VECTORS-
dc.subject.keywordPlusTHERAPY-
dc.subject.keywordPlusPOLYETHYLENIMINE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusRNA-
Appears in Collection
BS-Journal Papers(저널논문)NT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 106 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0