Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime

Cited 18 time in webofscience Cited 0 time in scopus
  • Hit : 482
  • Download : 359
Metal nanotip photoemitters have proven to be versatile in fundamental nanoplasmonics research and applications, including, e.g., the generation of ultrafast electron pulses, the adiabatic focusing of plasmons, and as light-triggered electron sources for microscopy. Here, we report the generation of high energy photoelectrons (up to 160 eV) in photoemission from single-crystalline nanowire tips in few-cycle, 750-nm laser fields at peak intensities of (2-7.3) x 10(12) W/cm(2). Recording the carrier-envelope phase (CEP)-dependent photoemission from the nanowire tips allows us to identify rescattering contributions and also permits us to determine the high-energy cutoff of the electron spectra as a function of laser intensity. So far these types of experiments from metal nanotips have been limited to an emission regime with less than one electron per pulse. We detect up to 13 e/shot and given the limited detection efficiency, we expect up to a few ten times more electrons being emitted from the nanowire. Within the investigated intensity range, we find linear scaling of cutoff energies. The nonlinear scaling of electron count rates is consistent with tunneling photoemission occurring in the absence of significant charge interaction. The high electron energy gain is attributed to field-induced rescattering in the enhanced nanolocalized fields at the wires apex, where a strong CEP-modulation is indicative of the attosecond control of photoemission. (C) 2017 Author(s).
Publisher
AMER INST PHYSICS
Issue Date
2017-03
Language
English
Article Type
Article
Citation

APL PHOTONICS, v.2, no.3

ISSN
2378-0967
DOI
10.1063/1.4974529
URI
http://hdl.handle.net/10203/223245
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
000395387000007.pdf(2 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0