Understanding in-video dropouts and interaction peaks in online lecture videos

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 222
  • Download : 0
With thousands of learners watching the same online lecture videos, analyzing video watching patterns provides a unique opportunity to understand how students learn with videos. This paper reports a large-scale analysis of in-video dropout and peaks in viewership and student activity, using second-by-second user interaction data from 862 videos in four Massive Open Online Courses (MOOCs) on edX. We find higher dropout rates in longer videos, re-watching sessions (vs first-time), and tutorials (vs lectures). Peaks in re-watching sessions and play events indicate points of interest and confusion. Results show that tutorials (vs lectures) and re-watching sessions (vs first-time) lead to more frequent and sharper peaks. In attempting to reason why peaks occur by sampling 80 videos, we observe that 61% of the peaks accompany visual transitions in the video, e.g., a slide view to a classroom view. Based on this observation, we identify five student activity patterns that can explain peaks: starting from the beginning of a new material, returning to missed content, following a tutorial step, replaying a brief segment, and repeating a non-visual explanation. Our analysis has design implications for video authoring, editing, and interface design, providing a richer understanding of video learning on MOOCs.
Publisher
Association for Computing Machinery
Issue Date
2014-03-04
Language
English
Citation

1st ACM Conference on Learning at Scale, L@S 2014, pp.31 - 40

DOI
10.1145/2556325.2566239
URI
http://hdl.handle.net/10203/222590
Appears in Collection
CS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0